IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v201y2022ip1p766-779.html
   My bibliography  Save this article

An innovative combined model based on multi-objective optimization approach for forecasting short-term wind speed: A case study in China

Author

Listed:
  • Li, Jingrui
  • Wang, Jianzhou
  • Zhang, Haipeng
  • Li, Zhiwu

Abstract

Wind speed forecasting plays a crucial role in enhancing the operating efficiency of wind power systems for generating electric power. Currently, a substantial number of approaches have been developed to improve the precision of wind speed forecasting. However, owing to the instability and fluctuation of wind speed, many models ignore the deficiencies of the individual models and data preprocessing strategies, which leads to results with poor accuracy. In this study, a novel forecasting system that combines data denoising methods, traditional forecasting algorithms, and a combination optimization approach to predict wind speed is proposed. To analyze the training and testing dataset, this study uses the 10-min original wind speed dataset from a wind farm in Penglai, China. Based on the results of three comparative numerical simulations and the discussion of the proposed forecasting system, it is revealed that the developed model performs more effectively than other models. Therefore, in this study we conclude that the proposed combined forecasting system is an efficient and promising technique that provides precise results for predicting wind speed in the short term, and it could be employed for further applications in energy systems.

Suggested Citation

  • Li, Jingrui & Wang, Jianzhou & Zhang, Haipeng & Li, Zhiwu, 2022. "An innovative combined model based on multi-objective optimization approach for forecasting short-term wind speed: A case study in China," Renewable Energy, Elsevier, vol. 201(P1), pages 766-779.
  • Handle: RePEc:eee:renene:v:201:y:2022:i:p1:p:766-779
    DOI: 10.1016/j.renene.2022.10.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122016251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.10.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, William Y.Y. & Liu, Yubao & Bourgeois, Alfred J. & Wu, Yonghui & Haupt, Sue Ellen, 2017. "Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation," Renewable Energy, Elsevier, vol. 107(C), pages 340-351.
    2. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    3. Wang, Yong & Han, Linna & Ma, Xuejiao, 2022. "International tourism and economic vulnerability," Annals of Tourism Research, Elsevier, vol. 94(C).
    4. Wang, Yuanyuan & Wang, Jianzhou & Zhao, Ge & Dong, Yao, 2012. "Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China," Energy Policy, Elsevier, vol. 48(C), pages 284-294.
    5. Shi, Jing & Guo, Jinmei & Zheng, Songtao, 2012. "Evaluation of hybrid forecasting approaches for wind speed and power generation time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3471-3480.
    6. Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
    7. Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2018. "Multi-step ahead forecasting in electrical power system using a hybrid forecasting system," Renewable Energy, Elsevier, vol. 122(C), pages 533-550.
    8. Zhu, Lin & Luo, Jian & Dong, Qingli & Zhao, Yang & Wang, Yunyue & Wang, Yong, 2021. "Green technology innovation efficiency of energy-intensive industries in China from the perspective of shared resources: Dynamic change and improvement path," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    9. Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.
    10. Dupré, Aurore & Drobinski, Philippe & Alonzo, Bastien & Badosa, Jordi & Briard, Christian & Plougonven, Riwal, 2020. "Sub-hourly forecasting of wind speed and wind energy," Renewable Energy, Elsevier, vol. 145(C), pages 2373-2379.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
    13. Sfetsos, A., 2000. "A comparison of various forecasting techniques applied to mean hourly wind speed time series," Renewable Energy, Elsevier, vol. 21(1), pages 23-35.
    14. Zhao, Weigang & Wei, Yi-Ming & Su, Zhongyue, 2016. "One day ahead wind speed forecasting: A resampling-based approach," Applied Energy, Elsevier, vol. 178(C), pages 886-901.
    15. Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
    16. Peng, Xiaosheng & Wang, Hongyu & Lang, Jianxun & Li, Wenze & Xu, Qiyou & Zhang, Zuowei & Cai, Tao & Duan, Shanxu & Liu, Fangjie & Li, Chaoshun, 2021. "EALSTM-QR: Interval wind-power prediction model based on numerical weather prediction and deep learning," Energy, Elsevier, vol. 220(C).
    17. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
    18. Li, Ranran & Jin, Yu, 2018. "A wind speed interval prediction system based on multi-objective optimization for machine learning method," Applied Energy, Elsevier, vol. 228(C), pages 2207-2220.
    19. Jiang, Ping & Wang, Yun & Wang, Jianzhou, 2017. "Short-term wind speed forecasting using a hybrid model," Energy, Elsevier, vol. 119(C), pages 561-577.
    20. Jianguo Zhou & Xuechao Yu & Baoling Jin, 2018. "Short-Term Wind Power Forecasting: A New Hybrid Model Combined Extreme-Point Symmetric Mode Decomposition, Extreme Learning Machine and Particle Swarm Optimization," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    21. Zhang, Xiaobo & Wang, Jianzhou & Gao, Yuyang, 2019. "A hybrid short-term electricity price forecasting framework: Cuckoo search-based feature selection with singular spectrum analysis and SVM," Energy Economics, Elsevier, vol. 81(C), pages 899-913.
    22. Li, Jingrui & Wang, Rui & Wang, Jianzhou & Li, Yifan, 2018. "Analysis and forecasting of the oil consumption in China based on combination models optimized by artificial intelligence algorithms," Energy, Elsevier, vol. 144(C), pages 243-264.
    23. Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
    24. Wang, Jianzhou & Hu, Jianming, 2015. "A robust combination approach for short-term wind speed forecasting and analysis – Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vec," Energy, Elsevier, vol. 93(P1), pages 41-56.
    25. Jiani Heng & Chen Wang & Xuejing Zhao & Liye Xiao, 2016. "Research and Application Based on Adaptive Boosting Strategy and Modified CGFPA Algorithm: A Case Study for Wind Speed Forecasting," Sustainability, MDPI, vol. 8(3), pages 1-25, March.
    26. Xiao, Ling & Wang, Jianzhou & Dong, Yao & Wu, Jie, 2015. "Combined forecasting models for wind energy forecasting: A case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 271-288.
    27. Zhilong Wang & Chen Wang & Jie Wu, 2016. "Wind Energy Potential Assessment and Forecasting Research Based on the Data Pre-Processing Technique and Swarm Intelligent Optimization Algorithms," Sustainability, MDPI, vol. 8(11), pages 1-32, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Haipeng & Wang, Jianzhou & Qian, Yuansheng & Li, Qiwei, 2024. "Point and interval wind speed forecasting of multivariate time series based on dual-layer LSTM," Energy, Elsevier, vol. 294(C).
    2. Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
    3. Tian, Zhirui & Wang, Jiyang, 2023. "A wind speed prediction system based on new data preprocessing strategy and improved multi-objective optimizer," Renewable Energy, Elsevier, vol. 215(C).
    4. Zhong, Mingwei & Xu, Cancheng & Xian, Zikang & He, Guanglin & Zhai, Yanpeng & Zhou, Yongwang & Fan, Jingmin, 2024. "DTTM: A deep temporal transfer model for ultra-short-term online wind power forecasting," Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.
    2. Yechi Zhang & Jianzhou Wang & Haiyan Lu, 2019. "Research and Application of a Novel Combined Model Based on Multiobjective Optimization for Multistep-Ahead Electric Load Forecasting," Energies, MDPI, vol. 12(10), pages 1-27, May.
    3. Li, Jingrui & Wang, Jiyang & Li, Zhiwu, 2023. "A novel combined forecasting system based on advanced optimization algorithm - A study on optimal interval prediction of wind speed," Energy, Elsevier, vol. 264(C).
    4. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    5. Wang, Yun & Wang, Haibo & Srinivasan, Dipti & Hu, Qinghua, 2019. "Robust functional regression for wind speed forecasting based on Sparse Bayesian learning," Renewable Energy, Elsevier, vol. 132(C), pages 43-60.
    6. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    7. Niu, Xinsong & Wang, Jiyang, 2019. "A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 241(C), pages 519-539.
    8. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    9. Wang, Jianzhou & Yang, Wendong & Du, Pei & Li, Yifan, 2018. "Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system," Energy, Elsevier, vol. 148(C), pages 59-78.
    10. Tawn, R. & Browell, J., 2022. "A review of very short-term wind and solar power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    11. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    12. Yang, Zhongshan & Wang, Jian, 2018. "A hybrid forecasting approach applied in wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Energy, Elsevier, vol. 160(C), pages 87-100.
    13. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    14. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    15. Yang, Zhongshan & Wang, Jian, 2018. "A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Applied Energy, Elsevier, vol. 230(C), pages 1108-1125.
    16. Li, Hongmin & Wang, Jianzhou & Lu, Haiyan & Guo, Zhenhai, 2018. "Research and application of a combined model based on variable weight for short term wind speed forecasting," Renewable Energy, Elsevier, vol. 116(PA), pages 669-684.
    17. Wang, Yun & Xu, Houhua & Song, Mengmeng & Zhang, Fan & Li, Yifen & Zhou, Shengchao & Zhang, Lingjun, 2023. "A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting," Applied Energy, Elsevier, vol. 333(C).
    18. Yuewei Liu & Shenghui Zhang & Xuejun Chen & Jianzhou Wang, 2018. "Artificial Combined Model Based on Hybrid Nonlinear Neural Network Models and Statistics Linear Models—Research and Application for Wind Speed Forecasting," Sustainability, MDPI, vol. 10(12), pages 1-30, December.
    19. Jianguo Zhou & Xiaolei Xu & Xuejing Huo & Yushuo Li, 2019. "Forecasting Models for Wind Power Using Extreme-Point Symmetric Mode Decomposition and Artificial Neural Networks," Sustainability, MDPI, vol. 11(3), pages 1-23, January.
    20. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:201:y:2022:i:p1:p:766-779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.