IDEAS home Printed from https://ideas.repec.org/p/mad/wpaper/2021-206.html
   My bibliography  Save this paper

Crop Diversity and Resilience to Droughts: Evidence from Indian Agriculture

Author

Listed:
  • S. Madhumitha

    (Madras School of Economics, Chennai, India)

  • Anubhab Pattanayak

    ((Corresponding author), Madras School of Economics, Chennai, India)

  • K.S. Kavi Kumar

    (Madras School of Economics, Chennai, India)

Abstract

Agricultural intensification and technological specialisation have led to the prevalence of mono-culture in India. Diversity within crop species has been gradually declining since the advent of Green Revolution in the 1960s. With increasingly frequent weather shocks, agricultural systems face the risk of yield and income losses. A quantitative assessment of district level agricultural data for the period 1966-2015 is used to understand whether crop diversification can cushion yield and income losses for farmers during droughts. The results indicate that diversification enhanced resilience during a rainfall deficit period in the Green Revolution period. However, in the post-Green Revolution period, increased specialization mitigated the adverse effects of rainfall deficit. When simultaneous occurrence of rainfall deficit and high temperature is considered as an alternative characterization of drought, crop diversity did not provide any insulation against such weather extremes. In the absence of any weather extremes, monoculture is found to be more lucrative owing to both supply and demand side factors like improved inputs, irrigation and infrastructure facilities, government’s support prices and pattern of consumption demand. Spatial trends in crop diversification also revealed some anomalies to these general results since some states in the country have unique cropping patterns.

Suggested Citation

  • S. Madhumitha & Anubhab Pattanayak & K.S. Kavi Kumar, 2021. "Crop Diversity and Resilience to Droughts: Evidence from Indian Agriculture," Working Papers 2021-206, Madras School of Economics,Chennai,India.
  • Handle: RePEc:mad:wpaper:2021-206
    as

    Download full text from publisher

    File URL: https://www.mse.ac.in/wp-content/uploads/2021/10/Working-Paper-206.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laura Brown & Saeed Moshiri, 2004. "Unemployment variation over the business cycles: a comparison of forecasting models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(7), pages 497-511.
    2. Willa W. Chen & Rohit S. Deo, 2004. "Power transformations to induce normality and their applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 117-130, February.
    3. Maehashi, Kohei & Shintani, Mototsugu, 2020. "Macroeconomic forecasting using factor models and machine learning: an application to Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
    4. Kohei Maehashi & Mototsugu Shintani, 2020. "Macroeconomic Forecasting Using Factor Models and Machine Learning: An Application to Japan," CIRJE F-Series CIRJE-F-1146, CIRJE, Faculty of Economics, University of Tokyo.
    5. Floros, Ch., 2005. "Forecasting the UK Unemployment Rate: Model Comparisons," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 2(4), pages 57-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
    2. James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.
    3. Francisco Lasso-Valderrama & Héctor M. Zárate-Solano, 2019. "Forecasting the Colombian Unemployment Rate Using Labour Force Flows," Borradores de Economia 1073, Banco de la Republica de Colombia.
    4. Ilkin Huseynov & Nazrin Ramazanova & Hikmat Valirzayev, 2022. "Using National Payment System Data to Nowcast Economic Activity in Azerbaijan," IHEID Working Papers 23-2022, Economics Section, The Graduate Institute of International Studies.
    5. Muhammad Anees Khan & Kumail Abbas & Mazliham Mohd Su’ud & Anas A. Salameh & Muhammad Mansoor Alam & Nida Aman & Mehreen Mehreen & Amin Jan & Nik Alif Amri Bin Nik Hashim & Roslizawati Che Aziz, 2022. "Application of Machine Learning Algorithms for Sustainable Business Management Based on Macro-Economic Data: Supervised Learning Techniques Approach," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    6. Gupta, Somya & Ghardallou, Wafa & Pandey, Dharen Kumar & Sahu, Ganesh P., 2022. "Artificial intelligence adoption in the insurance industry: Evidence using the technology–organization–environment framework," Research in International Business and Finance, Elsevier, vol. 63(C).
    7. Kakuho Furukawa & Ryohei Hisano, 2022. "A Nowcasting Model of Exports Using Maritime Big Data," Bank of Japan Working Paper Series 22-E-19, Bank of Japan.
    8. John Galbraith & Greg Tkacz, 2007. "How Far Can Forecasting Models Forecast? Forecast Content Horizons for Some Important Macroeconomic Variables," Staff Working Papers 07-1, Bank of Canada.
    9. Proietti, Tommaso & Luati, Alessandra, 2015. "The generalised autocovariance function," Journal of Econometrics, Elsevier, vol. 186(1), pages 245-257.
    10. Julien Chevallier & Benoît Sévi, 2011. "On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting," Annals of Finance, Springer, vol. 7(1), pages 1-29, February.
    11. Elena Olmedo, 2014. "Forecasting Spanish Unemployment Using Near Neighbour and Neural Net Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 43(2), pages 183-197, February.
    12. Poulin, Jennifer & Duchesne, Pierre, 2008. "On the power transformation of kernel-based tests for serial correlation in vector time series: Some finite sample results and a comparison with the bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4432-4457, May.
    13. Muneeb Ahmad & Yousaf Ali Khan & Chonghui Jiang & Syed Jawad Haider Kazmi & Syed Zaheer Abbas, 2023. "The impact of COVID‐19 on unemployment rate: An intelligent based unemployment rate prediction in selected countries of Europe," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 528-543, January.
    14. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    15. Simone Bianco & Roberto Reno, 2009. "Unexpected volatility and intraday serial correlation," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 465-475.
    16. Gonçalves, Sílvia & Meddahi, Nour, 2011. "Box-Cox transforms for realized volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 129-144, January.
    17. Tanujit Chakraborty & Ashis Kumar Chakraborty & Munmun Biswas & Sayak Banerjee & Shramana Bhattacharya, 2021. "Unemployment Rate Forecasting: A Hybrid Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 183-201, January.
    18. Chen, Willa W. & Deo, Rohit S., 2006. "The Variance Ratio Statistic At Large Horizons," Econometric Theory, Cambridge University Press, vol. 22(2), pages 206-234, April.
    19. Anders Eriksson & Daniel P. A. Preve & Jun Yu, 2019. "Forecasting Realized Volatility Using a Nonnegative Semiparametric Model," JRFM, MDPI, vol. 12(3), pages 1-23, August.
    20. Adriana AnaMaria Davidescu & Simona-Andreea Apostu & Liviu Adrian Stoica, 2021. "Socioeconomic Effects of COVID-19 Pandemic: Exploring Uncertainty in the Forecast of the Romanian Unemployment Rate for the Period 2020–2023," Sustainability, MDPI, vol. 13(13), pages 1-22, June.

    More about this item

    Keywords

    Crop diversity; Drought; Indian agriculture; Green Revolution;
    All these keywords.

    JEL classification:

    • Q10 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - General
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mad:wpaper:2021-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geetha G (email available below). General contact details of provider: https://edirc.repec.org/data/mseacin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.