IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8571-d861815.html
   My bibliography  Save this article

Impact of the Light-Duty Vehicles’ Storage and Travel Demand on the Sustainable Exploitation of Available Resources and Air Pollution Abatement

Author

Listed:
  • Mihai Machedon-Pisu

    (Department of Electronics and Computers, Transilvania University of Brașov, B-dul Eroilor Nr. 29, 500036 Brașov, Romania)

  • Paul Nicolae Borza

    (Department of Electronics and Computers, Transilvania University of Brașov, B-dul Eroilor Nr. 29, 500036 Brașov, Romania)

Abstract

Light-duty vehicles are the predominant means of road transport. As the world population is expected to increase significantly in the following decades, so too will the car fleet. Due to the rising population, and the implicitly higher travel demand, the energy demand of cars will increase too, and this will put a strain on current resources, with negative effects on the supply chain, possibly leading to more pollution. Many of the current sustainable transport models and frameworks attempt to predict the vehicle market share for different powertrains and the resulting impact based on scenarios that cater to the automotive market and industry demands. At the same time, most neglect aspects regarding resources’ depletion and storage demand. In this sense, this study proposes a coherent testing methodology based on the ratio between demand and supply in order to address the limitations of these studies, mainly related to the sustainable exploitation of available resources, which are analyzed herein in correlation with the current predictions. A sensitivity analysis is provided in order to evaluate the uncertainty of utilized predictions. As a result of this analysis, two novel scenarios for assessing the evolution of the vehicle market share are proposed by the authors. When compared to similar scenarios, it was shown that the proposed scenarios lead to noticeable benefits in reducing dependency on the resources associated with a demand of energy and raw materials and in mitigating air pollution, including related costs.

Suggested Citation

  • Mihai Machedon-Pisu & Paul Nicolae Borza, 2022. "Impact of the Light-Duty Vehicles’ Storage and Travel Demand on the Sustainable Exploitation of Available Resources and Air Pollution Abatement," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8571-:d:861815
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christoph Mazur & Gregory J. Offer & Marcello Contestabile & Nigel Brandon Brandon, 2018. "Comparing the Effects of Vehicle Automation, Policy-Making and Changed User Preferences on the Uptake of Electric Cars and Emissions from Transport," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    2. David Adam, 2021. "How far will global population rise? Researchers can’t agree," Nature, Nature, vol. 597(7877), pages 462-465, September.
    3. Michela Longo & Wahiba Yaïci & Dario Zaninelli, 2015. "“Team Play” between Renewable Energy Sources and Vehicle Fleet to Decrease Air Pollution," Sustainability, MDPI, vol. 8(1), pages 1-17, December.
    4. Esteban Lopez-Arboleda & Alfonso T. Sarmiento & Laura M. Cardenas, 2019. "Systematic Review of Integrated Sustainable Transportation Models for Electric Passenger Vehicle Diffusion," Sustainability, MDPI, vol. 11(9), pages 1-19, April.
    5. Han Hao & Feiqi Liu & Xin Sun & Zongwei Liu & Fuquan Zhao, 2019. "Quantifying the Energy, Environmental, Economic, Resource Co-Benefits and Risks of GHG Emissions Abatement: The Case of Passenger Vehicles in China," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
    6. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
    7. Mihai Machedon-Pisu & Paul Nicolae Borza, 2021. "A Methodological Approach to Assess the Impact of Energy and Raw Materials Constraints on the Sustainable Deployment of Light-Duty Vehicles by 2050," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    8. Siavash Khalili & Eetu Rantanen & Dmitrii Bogdanov & Christian Breyer, 2019. "Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World," Energies, MDPI, vol. 12(20), pages 1-54, October.
    9. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    10. Mihai Machedon-Pisu & Paul Nicolae Borza, 2019. "Are Personal Electric Vehicles Sustainable? A Hybrid E-Bike Case Study," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    11. Jung, Heejung & Li, Chengguo, 2018. "Emissions from Plug-in Hybrid Electric Vehicle (PHEV) During Real World Driving Under Various Weather Conditions," Institute of Transportation Studies, Working Paper Series qt0c4842fp, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihai Machedon-Pisu & Paul Nicolae Borza, 2021. "A Methodological Approach to Assess the Impact of Energy and Raw Materials Constraints on the Sustainable Deployment of Light-Duty Vehicles by 2050," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    2. Mihai Machedon-Pisu & Paul Nicolae Borza, 2023. "Is the Transition to Electric Passenger Cars Sustainable? A Life Cycle Perspective," Sustainability, MDPI, vol. 15(3), pages 1-22, February.
    3. Marc Wentker & Matthew Greenwood & Jens Leker, 2019. "A Bottom-Up Approach to Lithium-Ion Battery Cost Modeling with a Focus on Cathode Active Materials," Energies, MDPI, vol. 12(3), pages 1-18, February.
    4. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    5. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    6. Qiangyi Li & Jiexiao Ge & Mingyu Huang & Xiaoyu Wu & Houbao Fan, 2024. "Uncovering the Triple Synergy of New-Type Urbanization, Greening and Digitalization in China," Land, MDPI, vol. 13(7), pages 1-24, July.
    7. Daniel Rasbash & Kevin Joseph Dillman & Jukka Heinonen & Eyjólfur Ingi Ásgeirsson, 2023. "A National and Regional Greenhouse Gas Breakeven Assessment of EVs across North America," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    8. Agnieszka Skala, 2022. "Sustainable Transport and Mobility—Oriented Innovative Startups and Business Models," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    9. Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni, 2023. "A review of state-of-the-art techniques for the determination of the optimum cut-off grade of a metalliferous deposit with a bibliometric mapping in a surface mine planning context," Resources Policy, Elsevier, vol. 83(C).
    10. Vitalii Naumov & Andrzej Szarata & Hanna Vasiutina, 2022. "Simulating a Macrosystem of Cargo Deliveries by Road Transport Based on Big Data Volumes: A Case Study of Poland," Energies, MDPI, vol. 15(14), pages 1-23, July.
    11. Anca N. Iuga (Butnariu) & Vasile N. Popa & Luminița I. Popa, 2018. "Comparative Analysis of Automotive Products Regarding the Influence of Eco-Friendly Methods to Emissions’ Reduction," Energies, MDPI, vol. 12(1), pages 1-24, December.
    12. Liqiang Yang & Xiaotong He & Shaoguo Ru & Yongyu Zhang, 2024. "Herbicide leakage into seawater impacts primary productivity and zooplankton globally," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Ram, Manish & Gulagi, Ashish & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Energy transition in megacities towards 100% renewable energy: A case for Delhi," Renewable Energy, Elsevier, vol. 195(C), pages 578-589.
    14. Gert Berckmans & Maarten Messagie & Jelle Smekens & Noshin Omar & Lieselot Vanhaverbeke & Joeri Van Mierlo, 2017. "Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030," Energies, MDPI, vol. 10(9), pages 1-20, September.
    15. Jacek Pielecha & Kinga Skobiej & Przemyslaw Kubiak & Marek Wozniak & Krzysztof Siczek, 2022. "Exhaust Emissions from Plug-in and HEV Vehicles in Type-Approval Tests and Real Driving Cycles," Energies, MDPI, vol. 15(7), pages 1-38, March.
    16. Diana Carolina Gámez-García & José Manuel Gómez-Soberón & Ramón Corral-Higuera & Héctor Saldaña-Márquez & María Consolación Gómez-Soberón & Susana Paola Arredondo-Rea, 2018. "A Cradle to Handover Life Cycle Assessment of External Walls: Choice of Materials and Prognosis of Elements," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    17. José Alberto Fuinhas & Matheus Koengkan & Nuno Carlos Leitão & Chinazaekpere Nwani & Gizem Uzuner & Fatemeh Dehdar & Stefania Relva & Drielli Peyerl, 2021. "Effect of Battery Electric Vehicles on Greenhouse Gas Emissions in 29 European Union Countries," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    18. Guwen Tang & Meng Zhang & Fei Bu, 2023. "Vehicle Environmental Efficiency Evaluation in Different Regions in China: A Combination of the Life Cycle Analysis (LCA) and Two-Stage Data Envelopment Analysis (DEA) Methods," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    19. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    20. Batara Surya & Hamsina Hamsina & Ridwan Ridwan & Baharuddin Baharuddin & Firman Menne & Andi Tenri Fitriyah & Emil Salim Rasyidi, 2020. "The Complexity of Space Utilization and Environmental Pollution Control in the Main Corridor of Makassar City, South Sulawesi, Indonesia," Sustainability, MDPI, vol. 12(21), pages 1-41, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8571-:d:861815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.