IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2015i1p27-d61437.html
   My bibliography  Save this article

“Team Play” between Renewable Energy Sources and Vehicle Fleet to Decrease Air Pollution

Author

Listed:
  • Michela Longo

    (Department of Energy, Politecnico di Milano, Via La Masa 34, Milano 20156, Italy)

  • Wahiba Yaïci

    (Canmet ENERGY Research Centre, Natural Resources Canada, Ottawa, AB K1A 1M1, Canada
    These authors contributed equally to this work.)

  • Dario Zaninelli

    (Department of Energy, Politecnico di Milano, Via La Masa 34, Milano 20156, Italy
    These authors contributed equally to this work.)

Abstract

The reduction of air pollutants for the purpose of maintaining or improving air quality across the globe is a fundamental concern to which all modern governments are allocating varying amounts of attention and resources. The successful amelioration of air pollution requires strategic investments in the commercialization and adoption of “clean energy technologies” by both private and public entities, the conversion of contemporary houses to “smart houses”, the diffusion of Renewable Energy Sources (RES) including photovoltaic systems (PV), wind farms, and different forms of bioenergy, and the integration of electric-powered vehicles. In concert with these ideas, this paper aims to discuss the possibility of undertaking a feasibility study in two countries Canada and Italy concerning the integration of electric vehicles (EVs) and electric motorcycles (EMs). The proposed feasibility study would seek to assess the prospect of replacing the current vehicle fleets in these two countries with EVs in a manner that utilizes renewable energy sources and, thus, does not generate new toxic emissions. In conclusion, this study demonstrated that a pronounced introduction and distribution of RES, EVs, and EMs can operate as a great opportunity for both the environment and the capacities and needs of energy production. Today, the EV is not widespread. With this contribution, it is shown how EVs can be well integrated with renewable energy. Therefore, it is the duty of governments to implement policy strategies, in order to spread them across more territory.

Suggested Citation

  • Michela Longo & Wahiba Yaïci & Dario Zaninelli, 2015. "“Team Play” between Renewable Energy Sources and Vehicle Fleet to Decrease Air Pollution," Sustainability, MDPI, vol. 8(1), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:8:y:2015:i:1:p:27-:d:61437
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/1/27/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/1/27/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Schaltegger & Dorli Harms & Sarah Elena Windolph & Jacob Hörisch, 2014. "Involving Corporate Functions: Who Contributes to Sustainable Development?," Sustainability, MDPI, vol. 6(5), pages 1-22, May.
    2. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    3. Liu, Liansheng & Kong, Fanxin & Liu, Xue & Peng, Yu & Wang, Qinglong, 2015. "A review on electric vehicles interacting with renewable energy in smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 648-661.
    4. Fathabadi, Hassan, 2015. "Utilization of electric vehicles and renewable energy sources used as distributed generators for improving characteristics of electric power distribution systems," Energy, Elsevier, vol. 90(P1), pages 1100-1110.
    5. Claus-Heinrich Daub & Yvonne M. Scherrer & Arie H. Verkuil, 2014. "Exploring Reasons for the Resistance to Sustainable Management within Non-Profit Organizations," Sustainability, MDPI, vol. 6(6), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mihai Machedon-Pisu & Paul Nicolae Borza, 2022. "Impact of the Light-Duty Vehicles’ Storage and Travel Demand on the Sustainable Exploitation of Available Resources and Air Pollution Abatement," Sustainability, MDPI, vol. 14(14), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    2. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    3. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.
    4. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    5. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    6. Zhong, Zewei & Hu, Wuyang & Zhao, Xiaoli, 2024. "Rethinking electric vehicle smart charging and greenhouse gas emissions: Renewable energy growth, fuel switching, and efficiency improvement," Applied Energy, Elsevier, vol. 361(C).
    7. Papachristos, George, 2017. "Diversity in technology competition: The link between platforms and sociotechnical transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 291-306.
    8. Riccardo Iacobucci & Raffaele Bruno & Jan-Dirk Schmöcker, 2021. "An Integrated Optimisation-Simulation Framework for Scalable Smart Charging and Relocation of Shared Autonomous Electric Vehicles," Energies, MDPI, vol. 14(12), pages 1-22, June.
    9. Mazzeo, Domenico, 2019. "Nocturnal electric vehicle charging interacting with a residential photovoltaic-battery system: a 3E (energy, economic and environmental) analysis," Energy, Elsevier, vol. 168(C), pages 310-331.
    10. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    11. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    12. Seyfettin Vadi & Ramazan Bayindir & Alperen Mustafa Colak & Eklas Hossain, 2019. "A Review on Communication Standards and Charging Topologies of V2G and V2H Operation Strategies," Energies, MDPI, vol. 12(19), pages 1-27, September.
    13. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    14. Zhang, Xiang & Bai, Xue, 2017. "Incentive policies from 2006 to 2016 and new energy vehicle adoption in 2010–2020 in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 24-43.
    15. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    16. Paul Burger & Jan T. Frecè & Yvonne M. Scherrer & Claus-Heinrich Daub, 2014. "Strategies for Sustainability: Institutional and Organisational Challenges," Sustainability, MDPI, vol. 6(11), pages 1-6, November.
    17. Alanne, Kari & Cao, Sunliang, 2017. "Zero-energy hydrogen economy (ZEH2E) for buildings and communities including personal mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 697-711.
    18. Hu, Junjie & Morais, Hugo & Sousa, Tiago & Lind, Morten, 2016. "Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1207-1226.
    19. Yumiko Iwafune & Kazuhiko Ogimoto & Hitoshi Azuma, 2019. "Integration of Electric Vehicles into the Electric Power System Based on Results of Road Traffic Census," Energies, MDPI, vol. 12(10), pages 1-21, May.
    20. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2015:i:1:p:27-:d:61437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.