IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5297-d551196.html
   My bibliography  Save this article

Spatiotemporal Variations of Landscape Ecological Risks in a Resource-Based City under Transformation

Author

Listed:
  • Dong Wang

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221000, China
    Jiangsu Collaborative Innovation Center for Building Energy Saving and Construction Technology, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221000, China)

  • Xiang Ji

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221000, China)

  • Cheng Li

    (School of Architecture & Design, China University of Mining and Technology, Xuzhou 221000, China)

  • Yaxi Gong

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221000, China)

Abstract

The development of traditional resource-based cities requires drastic changes owing to the exhaustion of resources. During this transformation, the ecological environment of resource-based cities is threatened because of resource exploitation, in addition to the ecological risks caused by urban expansion. However, there is currently a lack of research on the evolution of ecological dangers in cities during this transformational period. Therefore, conducting relevant studies is essential to establishing a mechanism to mitigate these dangers. The present study analyzed Xuzhou, a typical resource-based city in China, as a case study. The main objective was to consider the dynamic changes in land use and ecological risks during the transformation of this resource-based city. The land-use changes in Xuzhou in 2000, 2010, and 2020 were analyzed, using the Markov model and landscape-pattern indices, allowing an ecological risk-assessment model of land-use changes to be constructed. Additionally, the spatial heterogeneity of ecological risks was evaluated by using spatial autocorrelation. The results showed that urban expansion influenced land use in Xuzhou significantly. Owing to the rapid urban expansion, the area of extremely high-risk regions increased significantly in 2010. Furthermore, the subsidence areas caused by mining had profound impacts on the region’s ecology, and early interventions for ecological restoration are needed to prevent further deterioration. During the transformation, Xuzhou’s overall ecological risks reduced gradually, which was conducive to its transition into an ecological city.

Suggested Citation

  • Dong Wang & Xiang Ji & Cheng Li & Yaxi Gong, 2021. "Spatiotemporal Variations of Landscape Ecological Risks in a Resource-Based City under Transformation," Sustainability, MDPI, vol. 13(9), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5297-:d:551196
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiahui Fan & Ya Wang & Zhen Zhou & Nanshan You & Jijun Meng, 2016. "Dynamic Ecological Risk Assessment and Management of Land Use in the Middle Reaches of the Heihe River Based on Landscape Patterns and Spatial Statistics," Sustainability, MDPI, vol. 8(6), pages 1-15, June.
    2. Deal, Brian & Schunk, Daniel, 2004. "Spatial dynamic modeling and urban land use transformation: a simulation approach to assessing the costs of urban sprawl," Ecological Economics, Elsevier, vol. 51(1-2), pages 79-95, November.
    3. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    4. Anselin, Luc & Getis, Arthur, 1992. "Spatial Statistical Analysis and Geographic Information Systems," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 26(1), pages 19-33, April.
    5. Jian Peng & Minli Zong & Yi'na Hu & Yanxu Liu & Jiansheng Wu, 2015. "Assessing Landscape Ecological Risk in a Mining City: A Case Study in Liaoyuan City, China," Sustainability, MDPI, vol. 7(7), pages 1-23, June.
    6. Di Liu & Hai Chen & Hang Zhang & Tianwei Geng & Qinqin Shi, 2020. "Spatiotemporal Evolution of Landscape Ecological Risk Based on Geomorphological Regionalization during 1980–2017: A Case Study of Shaanxi Province, China," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    7. Wayne G. Landis, 2004. "Ecological Risk Assessment Conceptual Model Formulation for Nonindigenous Species," Risk Analysis, John Wiley & Sons, vol. 24(4), pages 847-858, August.
    8. Jialin Li & Ruiliang Pu & Hongbo Gong & Xu Luo & Mengyao Ye & Baixiang Feng, 2017. "Evolution Characteristics of Landscape Ecological Risk Patterns in Coastal Zones in Zhejiang Province, China," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    9. Ying Li & Suiliang Huang, 2015. "Landscape Ecological Risk Responses to Land Use Change in the Luanhe River Basin, China," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hebing Zhang & Qingqing Yan & Fangfang Xie & Shouchen Ma, 2023. "Evaluation and Prediction of Landscape Ecological Security Based on a CA-Markov Model in Overlapped Area of Crop and Coal Production," Land, MDPI, vol. 12(1), pages 1-18, January.
    2. Fuwei Qiao & Yongping Bai & Lixia Xie & Xuedi Yang & Shuaishuai Sun, 2021. "Spatio-Temporal Characteristics of Landscape Ecological Risks in the Ecological Functional Zone of the Upper Yellow River, China," IJERPH, MDPI, vol. 18(24), pages 1-19, December.
    3. Jun Ma & Qiang Yu & Huiyuan Wang & Linzhe Yang & Ruirui Wang & Minzhe Fang, 2022. "Construction and Optimization of Wetland Landscape Ecological Network in Dongying City, China," Land, MDPI, vol. 11(8), pages 1-22, August.
    4. Yaxi Gong & Xiang Ji & Yuan Zhang & Shanshan Cheng, 2023. "Spatial Vitality Evaluation and Coupling Regulation Mechanism of a Complex Ecosystem in Lixiahe Plain Based on Multi-Source Data," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    5. He Gao & Wei Song, 2022. "Assessing the Landscape Ecological Risks of Land-Use Change," IJERPH, MDPI, vol. 19(21), pages 1-25, October.
    6. Yanbo Qu & Haining Zong & Desheng Su & Zongli Ping & Mei Guan, 2021. "Land Use Change and Its Impact on Landscape Ecological Risk in Typical Areas of the Yellow River Basin in China," IJERPH, MDPI, vol. 18(21), pages 1-26, October.
    7. Xuning Qiao & Liang Liu & Yongju Yang & Yangyang Gu & Jinchan Zheng, 2022. "Urban Expansion Assessment Based on Optimal Granularity in the Huaihe River Basin of China," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    8. Yaqi Cheng & Wei Song & Hao Yu & Xi Wei & Shuangqing Sheng & Bo Liu & He Gao & Junfang Li & Congjie Cao & Dazhi Yang, 2023. "Assessment and Prediction of Landscape Ecological Risk from Land Use Change in Xinjiang, China," Land, MDPI, vol. 12(4), pages 1-21, April.
    9. Qiang Fan & Yue Shi & Xiaonan Song & Hui Li & Wei Sun & Feng Wu, 2022. "Evolution Analysis of the Coupling Coordination of Microclimate and Landscape Ecological Risk Degree in the Xiahuayuan District in Recent 20 Years," Sustainability, MDPI, vol. 14(3), pages 1-13, February.
    10. Yanping Lan & Jianjun Chen & Yanping Yang & Ming Ling & Haotian You & Xiaowen Han, 2023. "Landscape Pattern and Ecological Risk Assessment in Guilin Based on Land Use Change," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    11. Xingcheng Ge & Jun Xu & Yong Xie & Xin Guo & Deyan Yang, 2021. "Evaluation and Dynamic Evolution of Eco-Efficiency of Resource-Based Cities—A Case Study of Typical Resource-Based Cities in China," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    12. Zhe Cheng & Tianyu Zhao & Tao Song & Li Cui & Xinfa Zhou, 2022. "Assessing the Spatio-Temporal Pattern and Development Characteristics of Regional Ecological Resources for Sustainable Development: A Case Study on Guizhou Province, China," Land, MDPI, vol. 11(6), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He Gao & Wei Song, 2022. "Assessing the Landscape Ecological Risks of Land-Use Change," IJERPH, MDPI, vol. 19(21), pages 1-25, October.
    2. Di Liu & Xiaoying Liang & Hai Chen & Hang Zhang & Nanzhao Mao, 2018. "A Quantitative Assessment of Comprehensive Ecological Risk for a Loess Erosion Gully: A Case Study of Dujiashi Gully, Northern Shaanxi Province, China," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    3. Yongchao Liu & Yongxue Liu & Jialin Li & Wanyun Lu & Xianglin Wei & Chao Sun, 2018. "Evolution of Landscape Ecological Risk at the Optimal Scale: A Case Study of the Open Coastal Wetlands in Jiangsu, China," IJERPH, MDPI, vol. 15(8), pages 1-21, August.
    4. Yanping Yang & Jianjun Chen & Yanping Lan & Guoqing Zhou & Haotian You & Xiaowen Han & Yu Wang & Xue Shi, 2022. "Landscape Pattern and Ecological Risk Assessment in Guangxi Based on Land Use Change," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    5. Hengrui Zhang & Jianing Zhang & Zhuozhuo Lv & Linjie Yao & Ning Zhang & Qing Zhang, 2023. "Spatio-Temporal Assessment of Landscape Ecological Risk and Associated Drivers: A Case Study of the Yellow River Basin in Inner Mongolia," Land, MDPI, vol. 12(6), pages 1-15, May.
    6. Li Li & Xiaoping Zhou & Lan Yang & Jinglong Duan & Zhuo Zeng, 2022. "Spatio-Temporal Characteristics and Influencing Factors of Ecological Risk in China’s North–South Transition Zone," Sustainability, MDPI, vol. 14(9), pages 1-17, May.
    7. Huiqing Han & Zhihua Su & Guangbin Yang, 2023. "Variations of Habitat Quality and Ecological Risk and Their Correlations with Landscape Metrics in a Robust Human Disturbed Coastal Region—Case Study: Xinggang Town in Southern China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    8. Yanping Lan & Jianjun Chen & Yanping Yang & Ming Ling & Haotian You & Xiaowen Han, 2023. "Landscape Pattern and Ecological Risk Assessment in Guilin Based on Land Use Change," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    9. Dongchuan Wang & Hua Chai & Zhiheng Wang & Kangjian Wang & Hongyi Wang & Hui Long & Jianshe Gao & Aoze Wei & Sirun Wang, 2022. "Dynamic Monitoring and Ecological Risk Analysis of Lake Inundation Areas in Tibetan Plateau," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    10. Tao Yu & Anming Bao & Wenqiang Xu & Hao Guo & Liangliang Jiang & Guoxiong Zheng & Ye Yuan & Vincent NZABARINDA, 2019. "Exploring Variability in Landscape Ecological Risk and Quantifying Its Driving Factors in the Amu Darya Delta," IJERPH, MDPI, vol. 17(1), pages 1-21, December.
    11. Peng Tian & Jialin Li & Hongbo Gong & Ruiliang Pu & Luodan Cao & Shuyao Shao & Zuoqi Shi & Xiuli Feng & Lijia Wang & Riuqing Liu, 2019. "Research on Land Use Changes and Ecological Risk Assessment in Yongjiang River Basin in Zhejiang Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    12. Daiva Juknelienė & Laima Česonienė & Donatas Jonikavičius & Daiva Šileikienė & Daiva Tiškutė-Memgaudienė & Jolanta Valčiukienė & Gintautas Mozgeris, 2022. "Development of Land Cover Naturalness in Lithuania on the Edge of the 21st Century: Trends and Driving Factors," Land, MDPI, vol. 11(3), pages 1-20, February.
    13. Yun Liu & Weiheng Xu & Zehu Hong & Leiguang Wang & Guanglong Ou & Ning Lu, 2022. "Assessment of Spatial-Temporal Changes of Landscape Ecological Risk in Xishuangbanna, China from 1990 to 2019," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    14. Jun Ma & Qiang Yu & Huiyuan Wang & Linzhe Yang & Ruirui Wang & Minzhe Fang, 2022. "Construction and Optimization of Wetland Landscape Ecological Network in Dongying City, China," Land, MDPI, vol. 11(8), pages 1-22, August.
    15. Binpin Gao & Yingmei Wu & Chen Li & Kejun Zheng & Yan Wu & Mengjiao Wang & Xin Fan & Shengya Ou, 2022. "Multi-Scenario Prediction of Landscape Ecological Risk in the Sichuan-Yunnan Ecological Barrier Based on Terrain Gradients," Land, MDPI, vol. 11(11), pages 1-22, November.
    16. Jianxiao Liu & Meilian Wang & Linchuan Yang, 2020. "Assessing Landscape Ecological Risk Induced by Land-Use/Cover Change in a County in China: A GIS- and Landscape-Metric-Based Approach," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    17. Isabelle D. Wolf & Parvaneh Sobhani & Hassan Esmaeilzadeh, 2023. "Assessing Changes in Land Use/Land Cover and Ecological Risk to Conserve Protected Areas in Urban–Rural Contexts," Land, MDPI, vol. 12(1), pages 1-22, January.
    18. Qiming Wang & Kun Yang & Lixiao Li & Yanhui Zhu, 2022. "Assessing the Terrain Gradient Effect of Landscape Ecological Risk in the Dianchi Lake Basin of China Using Geo-Information Tupu Method," IJERPH, MDPI, vol. 19(15), pages 1-19, August.
    19. Mechthild Donner & Anne Verniquet & Jan Broeze & Katrin Kayser & Hugo de Vries, 2021. "Critical success and risk factors for circular business models valorising agricultural waste and by-products," Post-Print hal-03004851, HAL.
    20. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5297-:d:551196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.