IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i11p2079-d977328.html
   My bibliography  Save this article

Multi-Scenario Prediction of Landscape Ecological Risk in the Sichuan-Yunnan Ecological Barrier Based on Terrain Gradients

Author

Listed:
  • Binpin Gao

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China)

  • Yingmei Wu

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China)

  • Chen Li

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China)

  • Kejun Zheng

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China
    Yunnan Academy of Social Sciences, Kunming 650000, China)

  • Yan Wu

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China)

  • Mengjiao Wang

    (Faculty of Geography, Yunnan Normal University, Kunming 650500, China)

  • Xin Fan

    (Center for Turkmenistan Studies, China University of Geosciences, Wuhan 430074, China)

  • Shengya Ou

    (University of Chinese Academy of Sciences, Beijing 860000, China)

Abstract

Land use changes induced by human activities change landscape patterns and ecological processes, threatening regional and global ecosystems. Terrain gradient and anthropogenic multi-policy regulation can have a pronounced effect on landscape components. Forecasting the changing trend of landscape ecological risk (LER) is important for national ecological security and regional sustainability. The present study assessed changes in LER in the Sichuan-Yunnan Ecological Barrier over a 20-year period using land use data from 2000, 2010, and 2020. The enhanced Markov-PLUS (patch-generating land use simulation) model was used to predict and analyze the spatial distribution pattern of LER under the following three scenarios. These were business-as-usual (BAU), urban development and construction (UDC), and ecological development priority (EDP) in 2030. The influence of terrain conditions on LER was also explored. The results showed that over the past 20 years, the LER index increased and then decreased and was dominated by medium and low risk, accounting for more than 70% of the total risk-rated area. The highest and higher risk areas for the three future scenarios have increased in spatial extent. The UDC scenario showed the largest increase of 3341.13 km 2 and 2684.85 km 2 , respectively. The highest-risk level has a strong selectivity for low gradients, with high-level risks more likely to occur at low gradients. The response of ecological risk to gradient changes shows a positive correlation distribution for high-gradient areas and a negative correlation distribution for low-gradient areas. The influence of future topographic gradient changes on LER remains significant. The value of multiscale geographically weighted regression (MGWR) for identifying the spatial heterogeneity of terrain gradient and LER is highlighted. It can play an important role in the formulation of scientific solutions for LER prevention and of an ecological conservation policy for mountainous areas with complex terrain.

Suggested Citation

  • Binpin Gao & Yingmei Wu & Chen Li & Kejun Zheng & Yan Wu & Mengjiao Wang & Xin Fan & Shengya Ou, 2022. "Multi-Scenario Prediction of Landscape Ecological Risk in the Sichuan-Yunnan Ecological Barrier Based on Terrain Gradients," Land, MDPI, vol. 11(11), pages 1-22, November.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:11:p:2079-:d:977328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/11/2079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/11/2079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Le Yin & Erfu Dai & Guopan Xie & Baolei Zhang, 2021. "Effects of Land-Use Intensity and Land Management Policies on Evolution of Regional Land System: A Case Study in the Hengduan Mountain Region," Land, MDPI, vol. 10(5), pages 1-13, May.
    2. Jiahui Fan & Ya Wang & Zhen Zhou & Nanshan You & Jijun Meng, 2016. "Dynamic Ecological Risk Assessment and Management of Land Use in the Middle Reaches of the Heihe River Based on Landscape Patterns and Spatial Statistics," Sustainability, MDPI, vol. 8(6), pages 1-15, June.
    3. Mingjie Shi & Hongqi Wu & Xin Fan & Hongtao Jia & Tong Dong & Panxing He & Muhammad Fahad Baqa & Pingan Jiang, 2021. "Trade-Offs and Synergies of Multiple Ecosystem Services for Different Land Use Scenarios in the Yili River Valley, China," Sustainability, MDPI, vol. 13(3), pages 1-15, February.
    4. Hualin Xie & Peng Wang & Hongsheng Huang, 2013. "Ecological Risk Assessment of Land Use Change in the Poyang Lake Eco-economic Zone, China," IJERPH, MDPI, vol. 10(1), pages 1-19, January.
    5. Sheng Liu & Ming Bai & Min Yao, 2021. "Integrating Ecosystem Function and Structure to Assess Landscape Ecological Risk in Traditional Village Clustering Areas," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    6. Jian Gong & Jianxin Yang & Wenwu Tang, 2015. "Spatially Explicit Landscape-Level Ecological Risks Induced by Land Use and Land Cover Change in a National Ecologically Representative Region in China," IJERPH, MDPI, vol. 12(11), pages 1-24, November.
    7. Guan, DongJie & Li, HaiFeng & Inohae, Takuro & Su, Weici & Nagaie, Tadashi & Hokao, Kazunori, 2011. "Modeling urban land use change by the integration of cellular automaton and Markov model," Ecological Modelling, Elsevier, vol. 222(20), pages 3761-3772.
    8. Chen Jun & Yifang Ban & Songnian Li, 2014. "Open access to Earth land-cover map," Nature, Nature, vol. 514(7523), pages 434-434, October.
    9. Ying Li & Suiliang Huang, 2015. "Landscape Ecological Risk Responses to Land Use Change in the Luanhe River Basin, China," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    10. Binpin Gao & Yingmei Wu & Chen Li & Kejun Zheng & Yan Wu, 2022. "Ecosystem Health Responses of Urban Agglomerations in Central Yunnan Based on Land Use Change," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiqing Han & Zhihua Su & Guangbin Yang, 2023. "Variations of Habitat Quality and Ecological Risk and Their Correlations with Landscape Metrics in a Robust Human Disturbed Coastal Region—Case Study: Xinggang Town in Southern China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    2. Ziyang Wang & Peiji Shi & Jing Shi & Xuebin Zhang & Litang Yao, 2023. "Research on Land Use Pattern and Ecological Risk of Lanzhou–Xining Urban Agglomeration from the Perspective of Terrain Gradient," Land, MDPI, vol. 12(5), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanping Lan & Jianjun Chen & Yanping Yang & Ming Ling & Haotian You & Xiaowen Han, 2023. "Landscape Pattern and Ecological Risk Assessment in Guilin Based on Land Use Change," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    2. Isabelle D. Wolf & Parvaneh Sobhani & Hassan Esmaeilzadeh, 2023. "Assessing Changes in Land Use/Land Cover and Ecological Risk to Conserve Protected Areas in Urban–Rural Contexts," Land, MDPI, vol. 12(1), pages 1-22, January.
    3. Yongchao Liu & Yongxue Liu & Jialin Li & Wanyun Lu & Xianglin Wei & Chao Sun, 2018. "Evolution of Landscape Ecological Risk at the Optimal Scale: A Case Study of the Open Coastal Wetlands in Jiangsu, China," IJERPH, MDPI, vol. 15(8), pages 1-21, August.
    4. Di Liu & Xiaoying Liang & Hai Chen & Hang Zhang & Nanzhao Mao, 2018. "A Quantitative Assessment of Comprehensive Ecological Risk for a Loess Erosion Gully: A Case Study of Dujiashi Gully, Northern Shaanxi Province, China," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    5. Haojun Xiong & Haozhi Hu & Pingyang Han & Min Wang, 2023. "Integrating Landscape Ecological Risks and Ecosystem Service Values into the Ecological Security Pattern Identification of Wuhan Urban Agglomeration," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    6. Ji Chai & Zhanqi Wang & Hongwei Zhang, 2017. "Integrated Evaluation of Coupling Coordination for Land Use Change and Ecological Security: A Case Study in Wuhan City of Hubei Province, China," IJERPH, MDPI, vol. 14(11), pages 1-21, November.
    7. Dongchuan Wang & Hua Chai & Zhiheng Wang & Kangjian Wang & Hongyi Wang & Hui Long & Jianshe Gao & Aoze Wei & Sirun Wang, 2022. "Dynamic Monitoring and Ecological Risk Analysis of Lake Inundation Areas in Tibetan Plateau," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    8. Yangfan Zhou & Lijie Pu & Ming Zhu, 2020. "Coastal Landscape Vulnerability Analysis in Eastern China—Based on Land-Use Change in Jiangsu Province," IJERPH, MDPI, vol. 17(5), pages 1-18, March.
    9. He Gao & Wei Song, 2022. "Assessing the Landscape Ecological Risks of Land-Use Change," IJERPH, MDPI, vol. 19(21), pages 1-25, October.
    10. Yun Liu & Weiheng Xu & Zehu Hong & Leiguang Wang & Guanglong Ou & Ning Lu, 2022. "Assessment of Spatial-Temporal Changes of Landscape Ecological Risk in Xishuangbanna, China from 1990 to 2019," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    11. Jiaying Yan & Shuang Du & Jinbo Zhang & Weiyu Yu, 2023. "Analyzing Transregional Vernacular Cultural Landscape Security Patterns with a Nature–Culture Lens: A Case Study of the Yangtze River Delta Demonstration Area, China," Land, MDPI, vol. 12(3), pages 1-29, March.
    12. Yanbo Qu & Haining Zong & Desheng Su & Zongli Ping & Mei Guan, 2021. "Land Use Change and Its Impact on Landscape Ecological Risk in Typical Areas of the Yellow River Basin in China," IJERPH, MDPI, vol. 18(21), pages 1-26, October.
    13. Jun Ma & Qiang Yu & Huiyuan Wang & Linzhe Yang & Ruirui Wang & Minzhe Fang, 2022. "Construction and Optimization of Wetland Landscape Ecological Network in Dongying City, China," Land, MDPI, vol. 11(8), pages 1-22, August.
    14. Jinsen Mou & Zhaofang Chen & Junda Huang, 2023. "Predicting Urban Expansion to Assess the Change of Landscape Character Types and Its Driving Factors in the Mountain City," Land, MDPI, vol. 12(4), pages 1-20, April.
    15. Yanping Yang & Jianjun Chen & Yanping Lan & Guoqing Zhou & Haotian You & Xiaowen Han & Yu Wang & Xue Shi, 2022. "Landscape Pattern and Ecological Risk Assessment in Guangxi Based on Land Use Change," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    16. Yuying Zhang & Rongjin Yang & Xiuhong Li & Meiying Sun & Le Zhang & Yanrong Lu & Lingyu Meng & Yunzhi Liu & Chen Wang, 2023. "Designing a Sustainable Development Path Based on Landscape Ecological Risk and Ecosystem Service Value in Southwest China," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    17. Qiming Wang & Kun Yang & Lixiao Li & Yanhui Zhu, 2022. "Assessing the Terrain Gradient Effect of Landscape Ecological Risk in the Dianchi Lake Basin of China Using Geo-Information Tupu Method," IJERPH, MDPI, vol. 19(15), pages 1-19, August.
    18. Dong Wang & Xiang Ji & Cheng Li & Yaxi Gong, 2021. "Spatiotemporal Variations of Landscape Ecological Risks in a Resource-Based City under Transformation," Sustainability, MDPI, vol. 13(9), pages 1-21, May.
    19. Qianning Zhang & Zhu Xu, 2021. "Fully Portraying Patch Area Scaling with Resolution: An Analytics and Descriptive Statistics-Combined Approach," Land, MDPI, vol. 10(3), pages 1-21, March.
    20. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:11:p:2079-:d:977328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.