IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i8p1691-d162627.html
   My bibliography  Save this article

Evolution of Landscape Ecological Risk at the Optimal Scale: A Case Study of the Open Coastal Wetlands in Jiangsu, China

Author

Listed:
  • Yongchao Liu

    (Department of Geographic Information Science, Nanjing University, Nanjing 210023, China
    Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Land and Resource, Nanjing 210024, China
    Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China)

  • Yongxue Liu

    (Department of Geographic Information Science, Nanjing University, Nanjing 210023, China
    Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China
    Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023, China)

  • Jialin Li

    (Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo 315211, China
    Institute for East China Sea, Ningbo University, Ningbo 315211, China)

  • Wanyun Lu

    (Department of Geographic Information Science, Nanjing University, Nanjing 210023, China)

  • Xianglin Wei

    (Department of Geographic Information Science, Nanjing University, Nanjing 210023, China)

  • Chao Sun

    (Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo 315211, China)

Abstract

Detailed analysis of the evolution characteristics of landscape ecological risk is crucial for coastal sustainable management and for understanding the potential environmental impacts of a man-made landform landscapes (MMLL). As a typical open coastal wetland, large-scale human activities (e.g., tidal reclamation, fishery activities, wind farm construction, and port construction) have substantially affected the evolution of the coastal ecological environment. Previous landscape ecological risk assessment studies have documented the effectiveness of assessing the quality of ecological environment processes. However, these studies have either focused on the noncoastal zone, or they have not considered the evolution of the spatial characteristics and ecological risk evolution of the landscape at an optimal scale. Here, we present a landscape ecological risk pattern (LERP) evolution model, based on two successive steps: first, we constructed an optimal scale method with an appropriate extent and grain using multi–temporal Landsat TM/OLI images acquired in the years 2000, 2004, 2008, 2013 and 2017, and then we calculated landscape ecological risk indices. Based on this model, the entire process of the spatiotemporal evolution of ecological risk patterns of the open coastal wetlands in Jiangsu, China, was determined. The principal findings are as follows: (1) The main landscape types in the study area are tidal flats and farmland, and the main features of the landscape evolution are a significant increase in aquafarming and a substantial decrease in the tidal flat area, while the landscape heterogeneity increased; (2) In the past 20 years, the areas of low and relatively low ecological risk in the study region were greatly reduced, while the areas of medium, relatively high, and high ecological risk greatly increased; the areas of high-grade ecological risk areas are mainly around Dongtai and Dafeng; (3) The area of ecological risk from low-grade to high-grade occupied 71.75% of the study area during 2000–2017. During the previous periods (2000–2004 and 2004–2008), the areas of low-grade ecological risk were transformed to areas of middle-grade ecological risk area, while during the later periods (2008–2013 and 2013–2017) there was a substantial increase in the proportion of areas of high-grade ecological risk. Our results complement the official database of coastal landscape planning, and provide important information for assessing the potential effects of MMLL processes on coastal environments.

Suggested Citation

  • Yongchao Liu & Yongxue Liu & Jialin Li & Wanyun Lu & Xianglin Wei & Chao Sun, 2018. "Evolution of Landscape Ecological Risk at the Optimal Scale: A Case Study of the Open Coastal Wetlands in Jiangsu, China," IJERPH, MDPI, vol. 15(8), pages 1-21, August.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:8:p:1691-:d:162627
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/8/1691/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/8/1691/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Anping & Groenewold, Nicolaas, 2010. "Reducing regional disparities in China: An evaluation of alternative policies," Journal of Comparative Economics, Elsevier, vol. 38(2), pages 189-198, June.
    2. Michael A. Wulder & Nicholas C. Coops, 2014. "Satellites: Make Earth observations open access," Nature, Nature, vol. 513(7516), pages 30-31, September.
    3. Jiahui Fan & Ya Wang & Zhen Zhou & Nanshan You & Jijun Meng, 2016. "Dynamic Ecological Risk Assessment and Management of Land Use in the Middle Reaches of the Heihe River Based on Landscape Patterns and Spatial Statistics," Sustainability, MDPI, vol. 8(6), pages 1-15, June.
    4. Jian Gong & Jianxin Yang & Wenwu Tang, 2015. "Spatially Explicit Landscape-Level Ecological Risks Induced by Land Use and Land Cover Change in a National Ecologically Representative Region in China," IJERPH, MDPI, vol. 12(11), pages 1-24, November.
    5. Caiyao Xu & Lijie Pu & Ming Zhu & Jianguo Li & Xinjian Chen & Xiaohan Wang & Xuefeng Xie, 2016. "Ecological Security and Ecosystem Services in Response to Land Use Change in the Coastal Area of Jiangsu, China," Sustainability, MDPI, vol. 8(8), pages 1-24, August.
    6. Paul J. Crutzen, 2002. "Geology of mankind," Nature, Nature, vol. 415(6867), pages 23-23, January.
    7. Chuansheng Wang & Guiyan Sun & Lijuan Dang, 2015. "Identifying Ecological Red Lines: A Case Study of the Coast in Liaoning Province," Sustainability, MDPI, vol. 7(7), pages 1-17, July.
    8. Ziyan Wang & Lina Tang & Quanyi Qiu & Huaxiang Chen & Tong Wu & Guofan Shao, 2018. "Assessment of Regional Ecosystem Health—A Case Study of the Golden Triangle of Southern Fujian Province, China," IJERPH, MDPI, vol. 15(4), pages 1-21, April.
    9. Hualin Xie & Peng Wang & Hongsheng Huang, 2013. "Ecological Risk Assessment of Land Use Change in the Poyang Lake Eco-economic Zone, China," IJERPH, MDPI, vol. 10(1), pages 1-19, January.
    10. Jian Peng & Minli Zong & Yi'na Hu & Yanxu Liu & Jiansheng Wu, 2015. "Assessing Landscape Ecological Risk in a Mining City: A Case Study in Liaoyuan City, China," Sustainability, MDPI, vol. 7(7), pages 1-23, June.
    11. Jialin Li & Ruiliang Pu & Hongbo Gong & Xu Luo & Mengyao Ye & Baixiang Feng, 2017. "Evolution Characteristics of Landscape Ecological Risk Patterns in Coastal Zones in Zhejiang Province, China," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    12. Boongaling, Cheamson Garret K. & Faustino-Eslava, Decibel V. & Lansigan, Felino P., 2018. "Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines," Land Use Policy, Elsevier, vol. 72(C), pages 116-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoran Fan & Qi Si & Wenming Dong & Gang Lu & Xinping Liu, 2023. "Land Use Change and Landscape Ecological Risk Prediction in Urumqi under the Shared Socio-Economic Pathways and the Representative Concentration Pathways (SSP-RCP) Scenarios," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
    2. Yangfan Zhou & Lijie Pu & Ming Zhu, 2020. "Coastal Landscape Vulnerability Analysis in Eastern China—Based on Land-Use Change in Jiangsu Province," IJERPH, MDPI, vol. 17(5), pages 1-18, March.
    3. Peng Tian & Luodan Cao & Jialin Li & Ruiliang Pu & Xiaoli Shi & Lijia Wang & Ruiqing Liu & Hao Xu & Chen Tong & Zijing Zhou & Shuyao Shao, 2019. "Landscape Grain Effect in Yancheng Coastal Wetland and Its Response to Landscape Changes," IJERPH, MDPI, vol. 16(12), pages 1-20, June.
    4. Zhibo Lu & Qian Song & Jianyun Zhao, 2023. "Evolution of Landscape Ecological Risk and Identification of Critical Areas in the Yellow River Source Area Based on LUCC," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    5. Huiqing Han & Zhihua Su & Guangbin Yang, 2023. "Variations of Habitat Quality and Ecological Risk and Their Correlations with Landscape Metrics in a Robust Human Disturbed Coastal Region—Case Study: Xinggang Town in Southern China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangfan Zhou & Lijie Pu & Ming Zhu, 2020. "Coastal Landscape Vulnerability Analysis in Eastern China—Based on Land-Use Change in Jiangsu Province," IJERPH, MDPI, vol. 17(5), pages 1-18, March.
    2. Yanping Yang & Jianjun Chen & Yanping Lan & Guoqing Zhou & Haotian You & Xiaowen Han & Yu Wang & Xue Shi, 2022. "Landscape Pattern and Ecological Risk Assessment in Guangxi Based on Land Use Change," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    3. Qiming Wang & Kun Yang & Lixiao Li & Yanhui Zhu, 2022. "Assessing the Terrain Gradient Effect of Landscape Ecological Risk in the Dianchi Lake Basin of China Using Geo-Information Tupu Method," IJERPH, MDPI, vol. 19(15), pages 1-19, August.
    4. Di Liu & Xiaoying Liang & Hai Chen & Hang Zhang & Nanzhao Mao, 2018. "A Quantitative Assessment of Comprehensive Ecological Risk for a Loess Erosion Gully: A Case Study of Dujiashi Gully, Northern Shaanxi Province, China," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    5. Yanping Lan & Jianjun Chen & Yanping Yang & Ming Ling & Haotian You & Xiaowen Han, 2023. "Landscape Pattern and Ecological Risk Assessment in Guilin Based on Land Use Change," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    6. Tao Yu & Anming Bao & Wenqiang Xu & Hao Guo & Liangliang Jiang & Guoxiong Zheng & Ye Yuan & Vincent NZABARINDA, 2019. "Exploring Variability in Landscape Ecological Risk and Quantifying Its Driving Factors in the Amu Darya Delta," IJERPH, MDPI, vol. 17(1), pages 1-21, December.
    7. Peng Tian & Jialin Li & Hongbo Gong & Ruiliang Pu & Luodan Cao & Shuyao Shao & Zuoqi Shi & Xiuli Feng & Lijia Wang & Riuqing Liu, 2019. "Research on Land Use Changes and Ecological Risk Assessment in Yongjiang River Basin in Zhejiang Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    8. He Gao & Wei Song, 2022. "Assessing the Landscape Ecological Risks of Land-Use Change," IJERPH, MDPI, vol. 19(21), pages 1-25, October.
    9. Yun Liu & Weiheng Xu & Zehu Hong & Leiguang Wang & Guanglong Ou & Ning Lu, 2022. "Assessment of Spatial-Temporal Changes of Landscape Ecological Risk in Xishuangbanna, China from 1990 to 2019," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    10. Jun Ma & Qiang Yu & Huiyuan Wang & Linzhe Yang & Ruirui Wang & Minzhe Fang, 2022. "Construction and Optimization of Wetland Landscape Ecological Network in Dongying City, China," Land, MDPI, vol. 11(8), pages 1-22, August.
    11. Binpin Gao & Yingmei Wu & Chen Li & Kejun Zheng & Yan Wu & Mengjiao Wang & Xin Fan & Shengya Ou, 2022. "Multi-Scenario Prediction of Landscape Ecological Risk in the Sichuan-Yunnan Ecological Barrier Based on Terrain Gradients," Land, MDPI, vol. 11(11), pages 1-22, November.
    12. Isabelle D. Wolf & Parvaneh Sobhani & Hassan Esmaeilzadeh, 2023. "Assessing Changes in Land Use/Land Cover and Ecological Risk to Conserve Protected Areas in Urban–Rural Contexts," Land, MDPI, vol. 12(1), pages 1-22, January.
    13. Dong Wang & Xiang Ji & Cheng Li & Yaxi Gong, 2021. "Spatiotemporal Variations of Landscape Ecological Risks in a Resource-Based City under Transformation," Sustainability, MDPI, vol. 13(9), pages 1-21, May.
    14. Li Li & Xiaoping Zhou & Lan Yang & Jinglong Duan & Zhuo Zeng, 2022. "Spatio-Temporal Characteristics and Influencing Factors of Ecological Risk in China’s North–South Transition Zone," Sustainability, MDPI, vol. 14(9), pages 1-17, May.
    15. Haojun Xiong & Haozhi Hu & Pingyang Han & Min Wang, 2023. "Integrating Landscape Ecological Risks and Ecosystem Service Values into the Ecological Security Pattern Identification of Wuhan Urban Agglomeration," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    16. Ji Chai & Zhanqi Wang & Hongwei Zhang, 2017. "Integrated Evaluation of Coupling Coordination for Land Use Change and Ecological Security: A Case Study in Wuhan City of Hubei Province, China," IJERPH, MDPI, vol. 14(11), pages 1-21, November.
    17. Dongchuan Wang & Hua Chai & Zhiheng Wang & Kangjian Wang & Hongyi Wang & Hui Long & Jianshe Gao & Aoze Wei & Sirun Wang, 2022. "Dynamic Monitoring and Ecological Risk Analysis of Lake Inundation Areas in Tibetan Plateau," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    18. Jian Gong & Jianxin Yang & Wenwu Tang, 2015. "Spatially Explicit Landscape-Level Ecological Risks Induced by Land Use and Land Cover Change in a National Ecologically Representative Region in China," IJERPH, MDPI, vol. 12(11), pages 1-24, November.
    19. Lei Zhao & Zhengtao Shi & Guangxiong He & Li He & Wenfei Xi & Qin Jiang, 2023. "Land Use Change and Landscape Ecological Risk Assessment Based on Terrain Gradients in Yuanmou Basin," Land, MDPI, vol. 12(9), pages 1-19, September.
    20. Jiaying Yan & Shuang Du & Jinbo Zhang & Weiyu Yu, 2023. "Analyzing Transregional Vernacular Cultural Landscape Security Patterns with a Nature–Culture Lens: A Case Study of the Yangtze River Delta Demonstration Area, China," Land, MDPI, vol. 12(3), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:8:p:1691-:d:162627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.