IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p941-d313612.html
   My bibliography  Save this article

Spatiotemporal Evolution of Landscape Ecological Risk Based on Geomorphological Regionalization during 1980–2017: A Case Study of Shaanxi Province, China

Author

Listed:
  • Di Liu

    (College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
    Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi’an 710127, China)

  • Hai Chen

    (College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
    Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi’an 710127, China)

  • Hang Zhang

    (College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
    Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi’an 710127, China)

  • Tianwei Geng

    (College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
    Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi’an 710127, China)

  • Qinqin Shi

    (College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
    Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi’an 710127, China)

Abstract

Land surface elements, such as land use, are in constant change and dynamically balanced, driving changes in global ecological processes and forming the regional differentiation of surface landscapes, which causes many ecological risks under multiple sources of stress. The landscape pattern index can quickly identify the disturbance caused by the vulnerability of the ecosystem itself, thus providing an effective method to support the spatial heterogeneity of landscape ecological risk. A landscape ecological risk model based on the degree of interference and fragility was constructed and spatiotemporal differentiation of risk between 1980 and 2017 in Shaanxi Province was analyzed. The spatiotemporal migration of risk was demonstrated from the perspective of geomorphological regionalization and risk gravity. Several conclusions were drawn: The risk of Shaanxi Province first increased and then decreased, at the same time, the spatial differentiation of landscape ecological risk was very significant. The ecological risk presented a significant positive correlation but the degree of autocorrelation decreased. The risk of the Qinba Mountains was low and the risk of the Guanzhong Plain and Han River basin was high. The risk of Loess Plateau and sandstorm transition zone decreased greatly and their risk gravities shifted to the southwest. The gravity of the Guanzhong Plain and Qinling Mountains had a northward trend, while the gravity of the Han River basin and Daba Mountains shifted to the southeast. In the analysis of typical regions, there were different relationships between morphological indicators and risk indexes under different geomorphological features. The appropriate engineering measures and landscape management for different geomorphological regionalization were suggested for effective reduction of ecological risks.

Suggested Citation

  • Di Liu & Hai Chen & Hang Zhang & Tianwei Geng & Qinqin Shi, 2020. "Spatiotemporal Evolution of Landscape Ecological Risk Based on Geomorphological Regionalization during 1980–2017: A Case Study of Shaanxi Province, China," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:941-:d:313612
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/941/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Di Liu & Xiaoying Liang & Hai Chen & Hang Zhang & Nanzhao Mao, 2018. "A Quantitative Assessment of Comprehensive Ecological Risk for a Loess Erosion Gully: A Case Study of Dujiashi Gully, Northern Shaanxi Province, China," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    2. Peng Tian & Jialin Li & Hongbo Gong & Ruiliang Pu & Luodan Cao & Shuyao Shao & Zuoqi Shi & Xiuli Feng & Lijia Wang & Riuqing Liu, 2019. "Research on Land Use Changes and Ecological Risk Assessment in Yongjiang River Basin in Zhejiang Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    3. Jialin Li & Ruiliang Pu & Hongbo Gong & Xu Luo & Mengyao Ye & Baixiang Feng, 2017. "Evolution Characteristics of Landscape Ecological Risk Patterns in Coastal Zones in Zhejiang Province, China," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    4. Focks, Andreas & ter Horst, Mechteld & van den Berg, Erik & Baveco, Hans & van den Brink, Paul J., 2014. "Integrating chemical fate and population-level effect models for pesticides at landscape scale: New options for risk assessment," Ecological Modelling, Elsevier, vol. 280(C), pages 102-116.
    5. Solecka, Iga & Raszka, Beata & Krajewski, Piotr, 2018. "Landscape analysis for sustainable land use policy: A case study in the municipality of Popielów, Poland," Land Use Policy, Elsevier, vol. 75(C), pages 116-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong Wang & Xiang Ji & Cheng Li & Yaxi Gong, 2021. "Spatiotemporal Variations of Landscape Ecological Risks in a Resource-Based City under Transformation," Sustainability, MDPI, vol. 13(9), pages 1-21, May.
    2. Xuebin Zhang & Jiale Yu & Haoyuan Feng & Litang Yao & Xuehong Li & Hucheng Du & Yanni Liu, 2024. "Landscape Ecological Risk and Drivers of Land-Use Transition under the Perspective of Differences in Topographic Gradient," Land, MDPI, vol. 13(6), pages 1-20, June.
    3. He Gao & Wei Song, 2022. "Assessing the Landscape Ecological Risks of Land-Use Change," IJERPH, MDPI, vol. 19(21), pages 1-25, October.
    4. Wenting Chen & Yongcai Wang & Tong Li & Huawei Wan & Yuxuan Chen, 2022. "Construction of a System of Indices for Determining the Contribution of Biodiversity to Human Well-Being in the Sanjiangyuan Area: A Spatiotemporal Distribution Study," Land, MDPI, vol. 11(8), pages 1-22, July.
    5. Yanbo Qu & Haining Zong & Desheng Su & Zongli Ping & Mei Guan, 2021. "Land Use Change and Its Impact on Landscape Ecological Risk in Typical Areas of the Yellow River Basin in China," IJERPH, MDPI, vol. 18(21), pages 1-26, October.
    6. Yanping Yang & Jianjun Chen & Yanping Lan & Guoqing Zhou & Haotian You & Xiaowen Han & Yu Wang & Xue Shi, 2022. "Landscape Pattern and Ecological Risk Assessment in Guangxi Based on Land Use Change," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    7. Hengrui Zhang & Jianing Zhang & Zhuozhuo Lv & Linjie Yao & Ning Zhang & Qing Zhang, 2023. "Spatio-Temporal Assessment of Landscape Ecological Risk and Associated Drivers: A Case Study of the Yellow River Basin in Inner Mongolia," Land, MDPI, vol. 12(6), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Tian & Luodan Cao & Jialin Li & Ruiliang Pu & Hongbo Gong & Changda Li, 2020. "Landscape Characteristics and Ecological Risk Assessment Based on Multi-Scenario Simulations: A Case Study of Yancheng Coastal Wetland, China," Sustainability, MDPI, vol. 13(1), pages 1-20, December.
    2. He Gao & Wei Song, 2022. "Assessing the Landscape Ecological Risks of Land-Use Change," IJERPH, MDPI, vol. 19(21), pages 1-25, October.
    3. Hao Liu & Haiguang Hao & Lihui Sun & Tingting Zhou, 2022. "Spatial–Temporal Evolution Characteristics of Landscape Ecological Risk in the Agro-Pastoral Region in Western China: A Case Study of Ningxia Hui Autonomous Region," Land, MDPI, vol. 11(10), pages 1-23, October.
    4. Jun Ma & Qiang Yu & Huiyuan Wang & Linzhe Yang & Ruirui Wang & Minzhe Fang, 2022. "Construction and Optimization of Wetland Landscape Ecological Network in Dongying City, China," Land, MDPI, vol. 11(8), pages 1-22, August.
    5. Yanping Yang & Jianjun Chen & Yanping Lan & Guoqing Zhou & Haotian You & Xiaowen Han & Yu Wang & Xue Shi, 2022. "Landscape Pattern and Ecological Risk Assessment in Guangxi Based on Land Use Change," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    6. Lucie Kupková & Ivan Bičík & Leoš Jeleček, 2021. "At the Crossroads of European Landscape Changes: Major Processes of Landscape Change in Czechia since the Middle of the 19th Century and Their Driving Forces," Land, MDPI, vol. 10(1), pages 1-25, January.
    7. Deslatte, Aaron & Szmigiel-Rawska, Katarzyna & Tavares, António F. & Ślawska, Justyna & Karsznia, Izabela & Łukomska, Julita, 2022. "Land use institutions and social-ecological systems: A spatial analysis of local landscape changes in Poland," Land Use Policy, Elsevier, vol. 114(C).
    8. Tao Hong & Ningli Liang & Haomeng Li, 2023. "Study on the Spatial and Temporal Evolution Characteristics and Driving Factors of the “Production–Living–Ecological Space” in Changfeng County," Sustainability, MDPI, vol. 15(13), pages 1-15, July.
    9. Shirvani Dastgerdi, Ahmadreza & Sargolini, Massimo & Broussard Allred, Shorna & Chatrchyan, Allison Morrill & Drescher, Michael & DeGeer, Christopher, 2022. "Climate change risk reduction in cultural landscapes: Insights from Cinque Terre and Waterloo," Land Use Policy, Elsevier, vol. 123(C).
    10. Wafaa Majeed Mutashar Al-Hameedi & Jie Chen & Cheechouyang Faichia & Biswajit Nath & Bazel Al-Shaibah & Ali Al-Aizari, 2022. "Geospatial Analysis of Land Use/Cover Change and Land Surface Temperature for Landscape Risk Pattern Change Evaluation of Baghdad City, Iraq, Using CA–Markov and ANN Models," Sustainability, MDPI, vol. 14(14), pages 1-31, July.
    11. Yaqi Cheng & Xuyang Zhang & Wei Song, 2024. "Ecological Risk Assessment of Land Use Change in the Tarim River Basin, Xinjiang, China," Land, MDPI, vol. 13(4), pages 1-18, April.
    12. Li Li & Xiaoping Zhou & Lan Yang & Jinglong Duan & Zhuo Zeng, 2022. "Spatio-Temporal Characteristics and Influencing Factors of Ecological Risk in China’s North–South Transition Zone," Sustainability, MDPI, vol. 14(9), pages 1-17, May.
    13. Di Liu & Xiaoying Liang & Hai Chen & Hang Zhang & Nanzhao Mao, 2018. "A Quantitative Assessment of Comprehensive Ecological Risk for a Loess Erosion Gully: A Case Study of Dujiashi Gully, Northern Shaanxi Province, China," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    14. Yanyan Jia & Xiaolan Tang & Wei Liu, 2020. "Spatial–Temporal Evolution and Correlation Analysis of Ecosystem Service Value and Landscape Ecological Risk in Wuhu City," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    15. Joanna Wiśniewska-Paluszak & Grzegorz Paluszak, 2021. "The Urban and Peri-Urban Farms (UPFs) Relational Model: The Case of Greater Poland Voivodeship, Poland," Agriculture, MDPI, vol. 11(5), pages 1-21, May.
    16. Huiqing Han & Zhihua Su & Guangbin Yang, 2023. "Variations of Habitat Quality and Ecological Risk and Their Correlations with Landscape Metrics in a Robust Human Disturbed Coastal Region—Case Study: Xinggang Town in Southern China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    17. Botlhe Matlhodi & Piet K. Kenabatho & Bhagabat P. Parida & Joyce G. Maphanyane, 2019. "Evaluating Land Use and Land Cover Change in the Gaborone Dam Catchment, Botswana, from 1984–2015 Using GIS and Remote Sensing," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    18. Yanping Lan & Jianjun Chen & Yanping Yang & Ming Ling & Haotian You & Xiaowen Han, 2023. "Landscape Pattern and Ecological Risk Assessment in Guilin Based on Land Use Change," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    19. Zhenbo Wang, 2018. "Land Spatial Development Based on Carrying Capacity, Land Development Potential, and Efficiency of Urban Agglomerations in China," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    20. Piotr Krajewski, 2019. "Monitoring of Landscape Transformations within Landscape Parks in Poland in the 21st Century," Sustainability, MDPI, vol. 11(8), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:941-:d:313612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.