IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5250-d550387.html
   My bibliography  Save this article

Life Cycle Assessments on Battery Electric Vehicles and Electrolytic Hydrogen: The Need for Calculation Rules and Better Databases on Electricity

Author

Listed:
  • Roberta Olindo

    (Air Liquide Forschung und Entwicklung GmbH, Gwinnerstrasse 27–33, 60388 Frankfurt am Main, Germany)

  • Nathalie Schmitt

    (Air Liquide S.A., Research & Development Innovation Campus Paris, 1 chemin de la Porte des Loges, 78350 Les Loges-En-Josas, France)

  • Joost Vogtländer

    (Industrial Design Engineering, Product Innovation Management, Delft University of Technology, Mekelweg 5, 2628 CD Delft, The Netherlands)

Abstract

LCAs of electric cars and electrolytic hydrogen production are governed by the consumption of electricity. Therefore, LCA benchmarking is prone to choices on electricity data. There are four issues: (1) leading Life Cycle Impact (LCI) databases suffer from inconvenient uncertainties and inaccuracies, (2) electricity mix in countries is rapidly changing, year after year, (3) the electricity mix is strongly fluctuating on an hourly and daily basis, which requires time-based allocation approaches, and (4) how to deal with nuclear power in benchmarking. This analysis shows that: (a) the differences of the GHG emissions of the country production mix in leading databases are rather high (30%), (b) in LCA, a distinction must be made between bundled and unbundled registered electricity certificates (RECs) and guarantees of origin (GOs); the residual mix should not be applied in LCA because of its huge inaccuracy, (c) time-based allocation rules for renewables are required to cope with periods of overproduction, (d) benchmarking of electricity is highly affected by the choice of midpoints and/or endpoint systems, and (e) there is an urgent need for a new LCI database, based on measured emission data, continuously kept up-to-date, transparent, and open access.

Suggested Citation

  • Roberta Olindo & Nathalie Schmitt & Joost Vogtländer, 2021. "Life Cycle Assessments on Battery Electric Vehicles and Electrolytic Hydrogen: The Need for Calculation Rules and Better Databases on Electricity," Sustainability, MDPI, vol. 13(9), pages 1-22, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5250-:d:550387
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5250/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5250/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan Christian Koj & Christina Wulf & Andrea Schreiber & Petra Zapp, 2017. "Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis," Energies, MDPI, vol. 10(7), pages 1-15, June.
    2. Jansen, Jaap, 2017. "Does the EU renewable energy sector still need a guarantees of origin market?," CEPS Papers 12714, Centre for European Policy Studies.
    3. Christina Wulf & Petra Zapp & Andrea Schreiber & Josefine Marx & Holger Schlör, 2017. "Lessons Learned from a Life Cycle Sustainability Assessment of Rare Earth Permanent Magnets," Journal of Industrial Ecology, Yale University, vol. 21(6), pages 1578-1590, December.
    4. Viviani Caroline Onishi & Carlos Henggeler Antunes & João Pedro Fernandes Trovão, 2020. "Optimal Energy and Reserve Market Management in Renewable Microgrid-PEVs Parking Lot Systems: V2G, Demand Response and Sustainability Costs," Energies, MDPI, vol. 13(8), pages 1-24, April.
    5. Michel Noussan & Roberta Roberto & Benedetto Nastasi, 2018. "Performance Indicators of Electricity Generation at Country Level—The Case of Italy," Energies, MDPI, vol. 11(3), pages 1-14, March.
    6. Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
    7. Ensslen, Axel & Schücking, Maximilian & Jochem, Patrick & Steffens, Henning & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Empirical carbon dioxide emissions of electric vehicles in a French-German commuter fleet test," MPRA Paper 91600, University Library of Munich, Germany.
    8. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    9. Ákos Hamburger, 2019. "Is guarantee of origin really an effective energy policy tool in Europe? A critical approach," Society and Economy, Akadémiai Kiadó, Hungary, vol. 41(4), pages 487-507, December.
    10. Junbeum Kim & Yi Yang & Junghan Bae & Sangwon Suh, 2013. "The Importance of Normalization References in Interpreting Life Cycle Assessment Results," Journal of Industrial Ecology, Yale University, vol. 17(3), pages 385-395, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianmarco Gottardo & Andrea Basso Peressut & Silvia Colnago & Saverio Latorrata & Luigi Piegari & Giovanni Dotelli, 2023. "LCA of a Proton Exchange Membrane Fuel Cell Electric Vehicle Considering Different Power System Architectures," Energies, MDPI, vol. 16(19), pages 1-19, September.
    2. Aleksander Jagiełło & Marcin Wołek & Wojciech Bizon, 2023. "Comparison of Tender Criteria for Electric and Diesel Buses in Poland—Has the Ongoing Revolution in Urban Transport Been Overlooked?," Energies, MDPI, vol. 16(11), pages 1-17, May.
    3. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    4. Lázaro V. Cremades & Lluc Canals Casals, 2022. "Analysis of the Future of Mobility: The Battery Electric Vehicle Seems Just a Transitory Alternative," Energies, MDPI, vol. 15(23), pages 1-12, December.
    5. Nikita V. Martyushev & Boris V. Malozyomov & Ilham H. Khalikov & Viktor Alekseevich Kukartsev & Vladislav Viktorovich Kukartsev & Vadim Sergeevich Tynchenko & Yadviga Aleksandrovna Tynchenko & Mengxu , 2023. "Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption," Energies, MDPI, vol. 16(2), pages 1-39, January.
    6. Simone Cornago & Yee Shee Tan & Carlo Brondi & Seeram Ramakrishna & Jonathan Sze Choong Low, 2022. "Systematic Literature Review on Dynamic Life Cycle Inventory: Towards Industry 4.0 Applications," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    7. Anna Lewandowska & Przemysław Kurczewski & Katarzyna Joachimiak-Lechman & Marek Zabłocki, 2021. "Environmental Life Cycle Assessment of Refrigerator Modelled with Application of Various Electricity Mixes and Technologies," Energies, MDPI, vol. 14(17), pages 1-17, August.
    8. Sebastian Fredershausen & Henrik Lechte & Mathias Willnat & Tobias Witt & Christine Harnischmacher & Tim-Benjamin Lembcke & Matthias Klumpp & Lutz Kolbe, 2021. "Towards an Understanding of Hydrogen Supply Chains: A Structured Literature Review Regarding Sustainability Evaluation," Sustainability, MDPI, vol. 13(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    2. Kakodkar, R. & He, G. & Demirhan, C.D. & Arbabzadeh, M. & Baratsas, S.G. & Avraamidou, S. & Mallapragada, D. & Miller, I. & Allen, R.C. & Gençer, E. & Pistikopoulos, E.N., 2022. "A review of analytical and optimization methodologies for transitions in multi-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Arvesen, Anders & Hauan, Ingrid Bjerke & Bolsøy, Bernhard Mikal & Hertwich, Edgar G., 2015. "Life cycle assessment of transport of electricity via different voltage levels: A case study for Nord-Trøndelag county in Norway," Applied Energy, Elsevier, vol. 157(C), pages 144-151.
    4. Blanco, Herib & Codina, Victor & Laurent, Alexis & Nijs, Wouter & Maréchal, François & Faaij, André, 2020. "Life cycle assessment integration into energy system models: An application for Power-to-Methane in the EU," Applied Energy, Elsevier, vol. 259(C).
    5. Sam Hamels, 2021. "CO 2 Intensities and Primary Energy Factors in the Future European Electricity System," Energies, MDPI, vol. 14(8), pages 1-30, April.
    6. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    8. Yu Dong & Tongyu Qin & Siyuan Zhou & Lu Huang & Rui Bo & Haibo Guo & Xunzhi Yin, 2020. "Comparative Whole Building Life Cycle Assessment of Energy Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums—A Case Study in China," Sustainability, MDPI, vol. 12(4), pages 1-24, February.
    9. Michel Noussan & Edoardo Campisi & Matteo Jarre, 2022. "Carbon Intensity of Passenger Transport Modes: A Review of Emission Factors, Their Variability and the Main Drivers," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    10. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    11. Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
    12. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    14. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    15. Marit Mohr & Jens F. Peters & Manuel Baumann & Marcel Weil, 2020. "Toward a cell‐chemistry specific life cycle assessment of lithium‐ion battery recycling processes," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1310-1322, December.
    16. Seck, Gondia Sokhna & Hache, Emmanuel & D'Herbemont, Vincent & Guyot, Mathis & Malbec, Louis-Marie, 2023. "Hydrogen development in Europe: Estimating material consumption in net zero emissions scenarios," International Economics, Elsevier, vol. 176(C).
    17. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    18. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    19. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    20. Parlikar, Anupam & Truong, Cong Nam & Jossen, Andreas & Hesse, Holger, 2021. "The carbon footprint of island grids with lithium-ion battery systems: An analysis based on levelized emissions of energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5250-:d:550387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.