IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5350-d623841.html
   My bibliography  Save this article

Environmental Life Cycle Assessment of Refrigerator Modelled with Application of Various Electricity Mixes and Technologies

Author

Listed:
  • Anna Lewandowska

    (Department of Quality Management, Poznań University of Economics and Business, 61-875 Poznan, Poland)

  • Przemysław Kurczewski

    (Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland)

  • Katarzyna Joachimiak-Lechman

    (Department of Quality Management, Poznań University of Economics and Business, 61-875 Poznan, Poland)

  • Marek Zabłocki

    (Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland)

Abstract

Improving national electricity mixes and increasing a share of renewable energy covered by credible and reliable tracking systems are vital topics, also in a context of life cycle assessment. There are many publications devoted to the relevance of energy in the life cycle of products, but only few LCA examples applying residual mixes have been found in the literature. The paper presents the results of an LCA study for a refrigerator calculated with using different electricity mixes and technologies. The life cycle was divided into eight stages and the electricity consumption was modelled as renewable energy, national residual mix, or national supplier mix. Electricity mixes for three different countries were selected and used. The study aimed to answer the following questions: “what are the most relevant elements in the life cycle of the analysed refrigerator?”, “do the elements change if various electricity mixes are applied?”, and “what differences are there in the environmental impact of electricity generation modelled as residual and supplier mixes?”. From the life cycle perspective, not only may differences in national electricity systems between countries turn out to be important, but equally significant may be the choice between different types of mixes for a certain country.

Suggested Citation

  • Anna Lewandowska & Przemysław Kurczewski & Katarzyna Joachimiak-Lechman & Marek Zabłocki, 2021. "Environmental Life Cycle Assessment of Refrigerator Modelled with Application of Various Electricity Mixes and Technologies," Energies, MDPI, vol. 14(17), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5350-:d:623841
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jones, Christopher & Gilbert, Paul & Raugei, Marco & Mander, Sarah & Leccisi, Enrica, 2017. "An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation," Energy Policy, Elsevier, vol. 100(C), pages 350-358.
    2. Roberta Olindo & Nathalie Schmitt & Joost Vogtländer, 2021. "Life Cycle Assessments on Battery Electric Vehicles and Electrolytic Hydrogen: The Need for Calculation Rules and Better Databases on Electricity," Sustainability, MDPI, vol. 13(9), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umara Khan & Ron Zevenhoven & Lydia Stougie & Tor-Martin Tveit, 2021. "Prediction of Stirling-Cycle-Based Heat Pump Performance and Environmental Footprint with Exergy Analysis and LCA," Energies, MDPI, vol. 14(24), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    2. Dahlia Byles & Salman Mohagheghi, 2023. "Sustainable Power Grid Expansion: Life Cycle Assessment, Modeling Approaches, Challenges, and Opportunities," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    3. Gianmarco Gottardo & Andrea Basso Peressut & Silvia Colnago & Saverio Latorrata & Luigi Piegari & Giovanni Dotelli, 2023. "LCA of a Proton Exchange Membrane Fuel Cell Electric Vehicle Considering Different Power System Architectures," Energies, MDPI, vol. 16(19), pages 1-19, September.
    4. Nils Thonemann & Anna Schulte & Daniel Maga, 2020. "How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    5. Kis, Zoltán & Pandya, Nikul & Koppelaar, Rembrandt H.E.M., 2018. "Electricity generation technologies: Comparison of materials use, energy return on investment, jobs creation and CO2 emissions reduction," Energy Policy, Elsevier, vol. 120(C), pages 144-157.
    6. Lázaro V. Cremades & Lluc Canals Casals, 2022. "Analysis of the Future of Mobility: The Battery Electric Vehicle Seems Just a Transitory Alternative," Energies, MDPI, vol. 15(23), pages 1-12, December.
    7. Ingrid Munné-Collado & Fabio Maria Aprà & Pol Olivella-Rosell & Roberto Villafáfila-Robles, 2019. "The Potential Role of Flexibility During Peak Hours on Greenhouse Gas Emissions: A Life Cycle Assessment of Five Targeted National Electricity Grid Mixes," Energies, MDPI, vol. 12(23), pages 1-22, November.
    8. Ana María Arbeláez Vélez & Andrius Plepys, 2021. "Car Sharing as a Strategy to Address GHG Emissions in the Transport System: Evaluation of Effects of Car Sharing in Amsterdam," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    9. Raugei, Marco & Sgouridis, Sgouris & Murphy, David & Fthenakis, Vasilis & Frischknecht, Rolf & Breyer, Christian & Bardi, Ugo & Barnhart, Charles & Buckley, Alastair & Carbajales-Dale, Michael & Csala, 2017. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response," Energy Policy, Elsevier, vol. 102(C), pages 377-384.
    10. Martínez, E. & Latorre-Biel, J.I. & Jiménez, E. & Sanz, F. & Blanco, J., 2018. "Life cycle assessment of a wind farm repowering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 260-271.
    11. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Remigiusz Mruk & Katarzyna Botwińska, 2020. "Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production," Energies, MDPI, vol. 13(3), pages 1-29, January.
    12. Simone Cornago & Yee Shee Tan & Carlo Brondi & Seeram Ramakrishna & Jonathan Sze Choong Low, 2022. "Systematic Literature Review on Dynamic Life Cycle Inventory: Towards Industry 4.0 Applications," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    13. Nikita V. Martyushev & Boris V. Malozyomov & Ilham H. Khalikov & Viktor Alekseevich Kukartsev & Vladislav Viktorovich Kukartsev & Vadim Sergeevich Tynchenko & Yadviga Aleksandrovna Tynchenko & Mengxu , 2023. "Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption," Energies, MDPI, vol. 16(2), pages 1-39, January.
    14. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2020. "Life-Cycle Carbon Emissions and Energy Return on Investment for 80% Domestic Renewable Electricity with Battery Storage in California (U.S.A.)," Energies, MDPI, vol. 13(15), pages 1-22, August.
    15. Sebastian Fredershausen & Henrik Lechte & Mathias Willnat & Tobias Witt & Christine Harnischmacher & Tim-Benjamin Lembcke & Matthias Klumpp & Lutz Kolbe, 2021. "Towards an Understanding of Hydrogen Supply Chains: A Structured Literature Review Regarding Sustainability Evaluation," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    16. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2021. "Life-Cycle Carbon Emissions and Energy Implications of High Penetration of Photovoltaics and Electric Vehicles in California," Energies, MDPI, vol. 14(16), pages 1-19, August.
    17. Raugei, Marco & Leccisi, Enrica & Fthenakis, Vasilis & Escobar Moragas, Rodrigo & Simsek, Yeliz, 2018. "Net energy analysis and life cycle energy assessment of electricity supply in Chile: Present status and future scenarios," Energy, Elsevier, vol. 162(C), pages 659-668.
    18. Aleksander Jagiełło & Marcin Wołek & Wojciech Bizon, 2023. "Comparison of Tender Criteria for Electric and Diesel Buses in Poland—Has the Ongoing Revolution in Urban Transport Been Overlooked?," Energies, MDPI, vol. 16(11), pages 1-17, May.
    19. Ismail Abubakar Jumare & Ramchandra Bhandari & Abdellatif Zerga, 2019. "Environmental Life Cycle Assessment of Grid-Integrated Hybrid Renewable Energy Systems in Northern Nigeria," Sustainability, MDPI, vol. 11(21), pages 1-24, October.
    20. Marco Raugei & Mashael Kamran & Allan Hutchinson, 2020. "A Prospective Net Energy and Environmental Life-Cycle Assessment of the UK Electricity Grid," Energies, MDPI, vol. 13(9), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5350-:d:623841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.