IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4713-d541696.html
   My bibliography  Save this article

Benefits of Circular Agriculture for Cropping Systems and Soil Fertility in Oases

Author

Listed:
  • Mustapha El Janati

    (Department of Crop Production, Protection and Biotechnology, Institut Agronomique et Vétérinaire Hassan II, Rabat 10101, Morocco
    Unité Mixte de Recherche Sol Agro et Hydrosystème Spatialisation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, 35000 Rennes, France)

  • Nouraya Akkal-Corfini

    (Unité Mixte de Recherche Sol Agro et Hydrosystème Spatialisation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, 35000 Rennes, France)

  • Ahmed Bouaziz

    (Department of Crop Production, Protection and Biotechnology, Institut Agronomique et Vétérinaire Hassan II, Rabat 10101, Morocco)

  • Abdallah Oukarroum

    (AgroBioSciences Program, Mohammed VI Polytechnic University, Benguerir 43150, Morocco)

  • Paul Robin

    (Unité Mixte de Recherche Sol Agro et Hydrosystème Spatialisation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, 35000 Rennes, France)

  • Ahmed Sabri

    (Institut National de la Recherche Agronomique, Errachidia 52000, Morocco)

  • Mohamed Chikhaoui

    (Department of Soil and Water Resource Management, Institut Agronomique et Vétérinaire Hassan II, Rabat 10101, Morocco)

  • Zahra Thomas

    (Unité Mixte de Recherche Sol Agro et Hydrosystème Spatialisation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, 35000 Rennes, France)

Abstract

Circular agriculture is an effective approach for the management of soil organic inputs that improves soil fertility and cropping system sustainability. We developed a cropping system typology and assessed effects of crop rotation, organic fertilization, and crop residue management on soil fertility properties. Farmers in Drâa-Tafilalet oases in Morocco were surveyed, and soil was sampled and analyzed. In the most common cropping systems (Type I), date palms were associated with cereals, forages, and perennial crops. Type II cropping systems referred to a monocropped date palm of only one cultivar. In Type III, date palm was associated with other crops on part of the utilized agricultural area and monocropped on the other part. In all cropping systems, mean soil organic matter (SOM) content was less than 1.5% and the SOM:clay ratio was less than 12%, which increased the soil degradation risk. Livestock was combined with crops in Type I and III cropping systems and produced 19.4 and 24.2 t of manure per farm per year, respectively. Type I and II cropping systems produced annually 0.98 and 2.1 t.ha −1 of dry palms, respectively. Recycling these organic waste products remains a promising option that could produce organic inputs and offset the current lack of manure.

Suggested Citation

  • Mustapha El Janati & Nouraya Akkal-Corfini & Ahmed Bouaziz & Abdallah Oukarroum & Paul Robin & Ahmed Sabri & Mohamed Chikhaoui & Zahra Thomas, 2021. "Benefits of Circular Agriculture for Cropping Systems and Soil Fertility in Oases," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4713-:d:541696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4713/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4713/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Noé Ortiz-Uribe & Ricardo Salomón-Torres & Robert Krueger, 2019. "Date Palm Status and Perspective in Mexico," Agriculture, MDPI, vol. 9(3), pages 1-15, March.
    2. Antonio Santoro & Martina Venturi & Sihem Ben Maachia & Fadwa Benyahia & Federica Corrieri & Francesco Piras & Mauro Agnoletti, 2020. "Agroforestry Heritage Systems as Agrobiodiversity Hotspots. The Case of the Mountain Oases of Tunisia," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    3. Alessandro Muscio & Roberta Sisto, 2020. "Are Agri-Food Systems Really Switching to a Circular Economy Model? Implications for European Research and Innovation Policy," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
    4. Molle, François & Tanouti, Oumaima, 2017. "Squaring the circle: Agricultural intensification vs. water conservation in Morocco," Agricultural Water Management, Elsevier, vol. 192(C), pages 170-179.
    5. Pramod Acharya & Rajan Ghimire & Youngkoo Cho, 2019. "Linking Soil Health to Sustainable Crop Production: Dairy Compost Effects on Soil Properties and Sorghum Biomass," Sustainability, MDPI, vol. 11(13), pages 1-13, June.
    6. Rahmatullah Hashimi & Eri Matsuura & Masakazu Komatsuzaki, 2020. "Effects of Cultivating Rice and Wheat with and without Organic Fertilizer Application on Greenhouse Gas Emissions and Soil Quality in Khost, Afghanistan," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    7. Lu Gong & Guixiang He & Weiguo Liu, 2016. "Long-Term Cropping Effects on Agricultural Sustainability in Alar Oasis of Xinjiang, China," Sustainability, MDPI, vol. 8(1), pages 1-11, January.
    8. Samuel I. Haruna & Nsalambi V. Nkongolo, 2019. "Tillage, Cover Crop and Crop Rotation Effects on Selected Soil Chemical Properties," Sustainability, MDPI, vol. 11(10), pages 1-11, May.
    9. Sukamal Sarkar & Milan Skalicky & Akbar Hossain & Marian Brestic & Saikat Saha & Sourav Garai & Krishnendu Ray & Koushik Brahmachari, 2020. "Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mhammad Houssni & Jalal Kassout & Mohamed El Mahroussi & Soufian Chakkour & Mohamed Kadiri & Mohammed Ater & Alexandru-Ionut Petrisor, 2023. "Evaluation and Structuring of Agrodiversity in Oases Agroecosystems of Southern Morocco," Agriculture, MDPI, vol. 13(7), pages 1-21, July.
    2. Francesco Piras & Yulian Pan & Antonio Santoro & Beatrice Fiore & Qingwen Min & Xuan Guo & Mauro Agnoletti, 2024. "Agro-Silvo-Pastoral Heritage Conservation and Valorization—A Comparative Analysis of the Chinese Nationally Important Agricultural Heritage Systems and of the Italian Register of Historical Rural Land," Land, MDPI, vol. 13(7), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Waheed & Chuang Li & Murad Muhammad & Mushtaq Ahmad & Khalid Ali Khan & Hamed A. Ghramh & Zhongwei Wang & Daoyuan Zhang, 2023. "Sustainable Potato Growth under Straw Mulching Practices," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    2. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Jakub Frankowski & Wojciech Czekała, 2023. "Agricultural Plant Residues as Potential Co-Substrates for Biogas Production," Energies, MDPI, vol. 16(11), pages 1-14, May.
    4. Dong Chen & Kangning Xiong & Juan Zhang, 2022. "Progress on the Integrity Protection in the Natural World Heritage Site and Agroforestry Development in the Buffer Zone: An Implications for the World Heritage Karst," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    5. Samuel I. Haruna & Nsalambi V. Nkongolo, 2020. "Influence of Cover Crop, Tillage, and Crop Rotation Management on Soil Nutrients," Agriculture, MDPI, vol. 10(6), pages 1-14, June.
    6. Zhou, Xinyao & Zhang, Yongqiang & Sheng, Zhuping & Manevski, Kiril & Andersen, Mathias N. & Han, Shumin & Li, Huilong & Yang, Yonghui, 2021. "Did water-saving irrigation protect water resources over the past 40 years? A global analysis based on water accounting framework," Agricultural Water Management, Elsevier, vol. 249(C).
    7. Ngango, Jules & Nkurunziza, Fabrice, 2021. "Estimating the Impact of Sustainable Agricultural Intensification Practices on Household Productivity and Consumption in Rwanda: A Multinomial Endogenous Switching Regression," 2021 Conference, August 17-31, 2021, Virtual 315060, International Association of Agricultural Economists.
    8. Singh, Ranbir & Singh, Ajay & Sheoran, Parvender & Fagodiya, R.K. & Rai, Arvind Kumar & Chandra, Priyanka & Rani, Sonia & Yadav, Rajender Kumar & Sharma, P.C., 2022. "Energy efficiency and carbon footprints of rice-wheat system under long-term tillage and residue management practices in western Indo-Gangetic Plains in India," Energy, Elsevier, vol. 244(PA).
    9. Ahmad Hamidov & Ulan Kasymov & Kakhramon Djumaboev & Carsten Paul, 2022. "Rebound Effects in Irrigated Agriculture in Uzbekistan: A Stakeholder-Based Assessment," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    10. El Bilali, Ali & Taghi, Youssef & Briouel, Omar & Taleb, Abdeslam & Brouziyne, Youssef, 2022. "A framework based on high-resolution imagery datasets and MCS for forecasting evaporation loss from small reservoirs in groundwater-based agriculture," Agricultural Water Management, Elsevier, vol. 262(C).
    11. Andrade Díaz, Christhel & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2024. "The interplay between bioeconomy and the maintenance of long-term soil organic carbon stock in agricultural soils: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    12. Marian Gil & Mariusz Rudy & Paulina Duma-Kocan & Renata Stanisławczyk & Anna Krajewska & Dariusz Dziki & Waleed H. Hassoon, 2024. "Sustainability of Alternatives to Animal Protein Sources, a Comprehensive Review," Sustainability, MDPI, vol. 16(17), pages 1-27, September.
    13. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    14. Csaba Centeri & Dénes Saláta & Alfréd Szilágyi & György Orosz & Szilárd Czóbel & Viktor Grónás & Ferenc Gyulai & Eszter Kovács & Ákos Pető & Julianna Skutai & Zsolt Biró & Ákos Malatinszky, 2021. "Selected Good Practices in the Hungarian Agricultural Heritage," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    15. Yanli Fu & Jie Zhang & Tianzhu Guan, 2023. "High-Value Utilization of Corn Straw: From Waste to Wealth," Sustainability, MDPI, vol. 15(19), pages 1-14, October.
    16. Benabderrazik, K. & Kopainsky, B. & Tazi, L. & Joerin, J. & Six, J., 2021. "Agricultural intensification can no longer ignore water conservation – A systemic modelling approach to the case of tomato producers in Morocco," Agricultural Water Management, Elsevier, vol. 256(C).
    17. Zineb Moumen & Najiba El Amrani El Idrissi & Manuela Tvaronavičienė & Abderrahim Lahrach, 2019. "Water security and sustainable development," Post-Print hal-02342701, HAL.
    18. Arru, Brunella & Furesi, Roberto & Pulina, Pietro & Sau, Paola & Madau, Fabio A., 2022. "The Circular Economy in the Agri-food system: A Performance Measurement of European Countries," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 24(2), September.
    19. Chen, Huazhou & Chen, An & Xu, Lili & Xie, Hai & Qiao, Hanli & Lin, Qinyong & Cai, Ken, 2020. "A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources," Agricultural Water Management, Elsevier, vol. 240(C).
    20. Mateos, Luciano & dos Santos Almeida, Alexsandro Claudio & Frizzone, José Antônio & Lima, Sílvio Carlos Ribeiro Vieira, 2018. "Performance assessment of smallholder irrigation based on an energy-water-yield nexus approach," Agricultural Water Management, Elsevier, vol. 206(C), pages 176-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4713-:d:541696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.