IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4653-d541007.html
   My bibliography  Save this article

A Comprehensive Emissions Model Combining Autonomous Vehicles with Park and Ride and Electric Vehicle Transportation Policies

Author

Listed:
  • Mohammed Obaid

    (Department of Automotive Technologies, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Műegyetem rkp, 3 1111 Budapest, Hungary)

  • Arpad Torok

    (Department of Automotive Technologies, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Műegyetem rkp, 3 1111 Budapest, Hungary)

  • Jairo Ortega

    (Department of Transport Technology and Economics, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, Műegyetem rkp, 3 1111 Budapest, Hungary)

Abstract

Several transport policies reduce pollution levels caused by private vehicles by introducing autonomous or electric vehicles and encouraging mode shift from private to public transport through park and ride (P&R) facilities. However, combining the policies of introducing autonomous vehicles with the implementation of electric vehicles and using the P&R system could amplify the decrease of transport sector emissions. The COPERT software has been used to calculate the emissions. This article aims to study these policies and determine which combinations can better reduce pollution. The result shows that each combination of autonomous vehicles reduces pollution to different degrees. In conclusion, the shift to more sustainable transport modes through autonomous electric vehicles and P&R systems reduces pollution in the urban environment to a higher percentage. In contrast, the combination of autonomous vehicles has lower emission reduction but is easier to implement with the currently available infrastructure.

Suggested Citation

  • Mohammed Obaid & Arpad Torok & Jairo Ortega, 2021. "A Comprehensive Emissions Model Combining Autonomous Vehicles with Park and Ride and Electric Vehicle Transportation Policies," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4653-:d:541007
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4653/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4653/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhen, Xudong & Wang, Yang, 2015. "An overview of methanol as an internal combustion engine fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 477-493.
    2. Ahmad Alkharabsheh & Sarbast Moslem & Laila Oubahman & Szabolcs Duleba, 2021. "An Integrated Approach of Multi-Criteria Decision-Making and Grey Theory for Evaluating Urban Public Transportation Systems," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    3. Bosheng Rong & Hui Zhao & Shaohua Cui & Cuiping Zhang, 2018. "Continuum Dynamic Traffic Assignment Model for Autonomous Vehicles in a Polycentric Urban City with Environmental Consideration," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-15, November.
    4. Bilal Farhan & Alan Murray, 2006. "Distance decay and coverage in facility location planning," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 40(2), pages 279-295, June.
    5. Orsi, Francesco & Muratori, Matteo & Rocco, Matteo & Colombo, Emanuela & Rizzoni, Giorgio, 2016. "A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost," Applied Energy, Elsevier, vol. 169(C), pages 197-209.
    6. Huang, Yuhan & Hong, Guang & Huang, Ronghua, 2015. "Investigation to charge cooling effect and combustion characteristics of ethanol direct injection in a gasoline port injection engine," Applied Energy, Elsevier, vol. 160(C), pages 244-254.
    7. Iacobucci, Riccardo & McLellan, Benjamin & Tezuka, Tetsuo, 2018. "Modeling shared autonomous electric vehicles: Potential for transport and power grid integration," Energy, Elsevier, vol. 158(C), pages 148-163.
    8. Michał Adamczak & Adrianna Toboła & Jadwiga Fijałkowska & Piotr Cyplik & Maciej Tórz, 2020. "Analysis of Incentives to Eco-Driving for Car Rental Companies’ Customers," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    9. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
    10. Xiaojian Hu & Nuo Chen & Nan Wu & Bicheng Yin, 2021. "The Potential Impacts of Electric Vehicles on Urban Air Quality in Shanghai City," Sustainability, MDPI, vol. 13(2), pages 1-12, January.
    11. Kimpton, Anthony & Pojani, Dorina & Sipe, Neil & Corcoran, Jonathan, 2020. "Parking Behavior: Park ‘n’ Ride (PnR) to encourage multimodalism in Brisbane," Land Use Policy, Elsevier, vol. 91(C).
    12. Jochem, Patrick & Babrowski, Sonja & Fichtner, Wolf, 2015. "Assessing CO2 emissions of electric vehicles in Germany in 2030," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 68-83.
    13. Duncan, Michael & Christensen, Robert K., 2013. "An analysis of park-and-ride provision at light rail stations across the US," Transport Policy, Elsevier, vol. 25(C), pages 148-157.
    14. Joana Cavadas & António Pais Antunes, 2019. "Optimization-based study of the location of park-and-ride facilities," Transportation Planning and Technology, Taylor & Francis Journals, vol. 42(3), pages 201-226, April.
    15. Mingardo, Giuliano, 2013. "Transport and environmental effects of rail-based Park and Ride: evidence from the Netherlands," Journal of Transport Geography, Elsevier, vol. 30(C), pages 7-16.
    16. Sivak, Michael & Schoettle, Brandon, 2012. "Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy," Transport Policy, Elsevier, vol. 22(C), pages 96-99.
    17. Jairo Ortega & Sarbast Moslem & János Tóth & Tamás Péter & Juan Palaguachi & Mario Paguay, 2020. "Using Best Worst Method for Sustainable Park and Ride Facility Location," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    18. Alam, Md. Saniul & Hyde, Bernard & Duffy, Paul & McNabola, Aonghus, 2017. "Assessment of pathways to reduce CO2 emissions from passenger car fleets: Case study in Ireland," Applied Energy, Elsevier, vol. 189(C), pages 283-300.
    19. Huang, Yuhan & Ng, Elvin C.Y. & Zhou, John L. & Surawski, Nic C. & Chan, Edward F.C. & Hong, Guang, 2018. "Eco-driving technology for sustainable road transport: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 596-609.
    20. Joana Cavadas & António Pais Antunes, 2019. "An optimization model for integrated transit-parking policy planning," Transportation, Springer, vol. 46(5), pages 1867-1891, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maksymilian Mądziel, 2023. "Liquified Petroleum Gas-Fuelled Vehicle CO 2 Emission Modelling Based on Portable Emission Measurement System, On-Board Diagnostics Data, and Gradient-Boosting Machine Learning," Energies, MDPI, vol. 16(6), pages 1-15, March.
    2. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.
    3. Muhammad Shahzad Sardar & Nabila Asghar & Mubbasher Munir & Reda Alhajj & Hafeez ur Rehman, 2022. "Moderation of Services’ EKC through Transportation Competitiveness: PQR Model in Global Prospective," IJERPH, MDPI, vol. 20(1), pages 1-17, December.
    4. Isam Mashhour Al Jawarneh & Luca Foschini & Paolo Bellavista, 2023. "Efficient Integration of Heterogeneous Mobility-Pollution Big Data for Joint Analytics at Scale with QoS Guarantees," Future Internet, MDPI, vol. 15(8), pages 1-28, August.
    5. Abebe Dress Beza & Mohammad Maghrour Zefreh & Adam Torok, 2022. "Impacts of Different Types of Automated Vehicles on Traffic Flow Characteristics and Emissions: A Microscopic Traffic Simulation of Different Freeway Segments," Energies, MDPI, vol. 15(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jairo Ortega & János Tóth & Tamás Péter & Sarbast Moslem, 2020. "An Integrated Model of Park-And-Ride Facilities for Sustainable Urban Mobility," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    2. Khan, Muhammad Imran & Shahrestani, Mehdi & Hayat, Tasawar & Shakoor, Abdul & Vahdati, Maria, 2019. "Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan," Applied Energy, Elsevier, vol. 242(C), pages 1738-1752.
    3. Jairo Ortega & János Tóth & Tamás Péter, 2021. "A Comprehensive Model to Study the Dynamic Accessibility of the Park & Ride System," Sustainability, MDPI, vol. 13(7), pages 1-17, April.
    4. Huang, Yuhan & Ng, Elvin C.Y. & Zhou, John L. & Surawski, Nic C. & Chan, Edward F.C. & Hong, Guang, 2018. "Eco-driving technology for sustainable road transport: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 596-609.
    5. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    6. Jaller, Miguel & Pahwa, Anmol & Zhang, Michael, 2021. "Cargo Routing and Disadvantaged Communities," Institute of Transportation Studies, Working Paper Series qt9qg2318x, Institute of Transportation Studies, UC Davis.
    7. Bi, Huibo & Shang, Wen-Long & Chen, Yanyan & Wang, Kezhi & Yu, Qing & Sui, Yi, 2021. "GIS aided sustainable urban road management with a unifying queueing and neural network model," Applied Energy, Elsevier, vol. 291(C).
    8. Yang Wang & Alessandra Boggio-Marzet, 2018. "Evaluation of Eco-Driving Training for Fuel Efficiency and Emissions Reduction According to Road Type," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    9. Wojciech Adamski & Krzysztof Brzozowski & Jacek Nowakowski & Tomasz Praszkiewicz & Tomasz Knefel, 2021. "Excess Fuel Consumption Due to Selection of a Lower Than Optimal Gear—Case Study Based on Data Obtained in Real Traffic Conditions," Energies, MDPI, vol. 14(23), pages 1-15, November.
    10. Moretti, Christian & Moro, Alberto & Edwards, Robert & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2017. "Analysis of standard and innovative methods for allocating upstream and refinery GHG emissions to oil products," Applied Energy, Elsevier, vol. 206(C), pages 372-381.
    11. Panagiotis Fafoutellis & Eleni G. Mantouka & Eleni I. Vlahogianni, 2020. "Eco-Driving and Its Impacts on Fuel Efficiency: An Overview of Technologies and Data-Driven Methods," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    12. Juan Francisco Coloma & Marta García & Gonzalo Fernández & Andrés Monzón, 2021. "Environmental Effects of Eco-Driving on Courier Delivery," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    13. Zhou, Xi-Yin & Xu, Zhicheng & Zheng, Jialin & Zhou, Ya & Lei, Kun & Fu, Jiafeng & Khu, Soon-Thiam & Yang, Junfeng, 2023. "Internal spillover effect of carbon emission between transportation sectors and electricity generation sectors," Renewable Energy, Elsevier, vol. 208(C), pages 356-366.
    14. Duncan, Michael, 2019. "Would the replacement of park-and-ride facilities with transit-oriented development reduce vehicle kilometers traveled in an auto-oriented US region?," Transport Policy, Elsevier, vol. 81(C), pages 293-301.
    15. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Zhong, Haotian & Li, Wei, 2016. "Rail transit investment and property values: An old tale retold," Transport Policy, Elsevier, vol. 51(C), pages 33-48.
    17. Zhao, Xinwei & Chen, Peng & Jiao, Junfeng & Chen, Xiaohong & Bischak, Chris, 2019. "How does ‘park and ride’ perform? An evaluation using longitudinal data," Transport Policy, Elsevier, vol. 74(C), pages 15-23.
    18. Liu, Yonggang & Chen, Qianyou & Li, Jie & Zhang, Yuanjian & Chen, Zheng & Lei, Zhenzhen, 2023. "Collaborated eco-routing optimization for continuous traffic flow based on energy consumption difference of multiple vehicles," Energy, Elsevier, vol. 274(C).
    19. Sarmad Zaman Rajper & Johan Albrecht, 2020. "Prospects of Electric Vehicles in the Developing Countries: A Literature Review," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    20. Wang, Shuaian & Qu, Xiaobo, 2017. "Station choice for Australian commuter rail lines: Equilibrium and optimal fare design," European Journal of Operational Research, Elsevier, vol. 258(1), pages 144-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4653-:d:541007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.