IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4595-d539973.html
   My bibliography  Save this article

System Dynamics as Ex Ante Impact Assessment Tool in International Development Cooperation: Study Case of Urban Sustainability Policies in Darkhan, Mongolia

Author

Listed:
  • Patricia Chica-Morales

    (Doctoral Program in Economics and Business, University of Malaga, 29071 Malaga, Spain)

  • Victor F. Muñoz

    (System Engineering and Automation, University of Málaga, 29071 Malaga, Spain)

  • Antonio J. Domenech

    (East Asian Studies Department, University of Málaga, 29071 Malaga, Spain)

Abstract

In recent years, there has been a trend of increasing criticism towards official development assistance (ODA) and the optimization of ODA policies, in a world of growing inequality between the Global North and Global South. To contribute to efficient ODA planning, this article proposes to innovatively apply system dynamics as an optimal tool for ex ante impact assessment. The study case is located in the slums of Darkhan (Mongolia), whose citizens and environment suffer the consequences of poor urban planning and lack of municipal solid waste management (MSWM). In this context, the present research proposes a policy of education and infrastructure as key factors for the improvement of MSWM in the context of an international cooperation plan, carried out by the Korean agency KOICA. To evaluate its impact and anticipate its effects, a tailor-made system dynamics model of a Darkhan district has been created, with the focus on the education process in order to simulate the different options of the proposed policies. The results show that education policy is particularly relevant for behavioral change, in terms of reducing waste burned and waste on the ground, and increasing composted and recycled waste. However, in this context, the policy is ineffective for improving the district’s water and air pollution situation. This article also offers discussions and recommendations to be applied to the international cooperation plan, which takes place in real life. It is expected that the described process of model construction and its results will contribute to the further use of system dynamics as a planning tool in the international cooperation field.

Suggested Citation

  • Patricia Chica-Morales & Victor F. Muñoz & Antonio J. Domenech, 2021. "System Dynamics as Ex Ante Impact Assessment Tool in International Development Cooperation: Study Case of Urban Sustainability Policies in Darkhan, Mongolia," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4595-:d:539973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4595/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Allington, Ginger R.H. & Li, Wei & Brown, Daniel G., 2017. "Urbanization and environmental policy effects on the future availability of grazing resources on the Mongolian Plateau: Modeling socio-environmental system dynamics," Environmental Science & Policy, Elsevier, vol. 68(C), pages 35-46.
    2. Guglielmina Mutani & Valeria Todeschi & Simone Beltramino, 2020. "Energy Consumption Models at Urban Scale to Measure Energy Resilience," Sustainability, MDPI, vol. 12(14), pages 1-31, July.
    3. Choongik Choi, 2012. "Inexorable Rise of in Mongolia: Demolition for Redevelopment or Conservation for Improvement?," International Review of Public Administration, Taylor & Francis Journals, vol. 17(2), pages 121-141, August.
    4. Bolorchimeg Byamba & Mamoru Ishikawa, 2017. "Municipal Solid Waste Management in Ulaanbaatar, Mongolia: Systems Analysis," Sustainability, MDPI, vol. 9(6), pages 1-21, May.
    5. Antonio Sianes, 2017. "Shedding Light On Policy Coherence for Development: A Conceptual Framework," Journal of International Development, John Wiley & Sons, Ltd., vol. 29(1), pages 134-146, January.
    6. Ali Bagheri & Peder Hjorth, 2007. "A Framework For Process Indicators To Monitor For Sustainable Development: Practice To An Urban Water System," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 9(2), pages 143-161, May.
    7. Rajesh Kumar Rai & Mani Nepal & Madan Singh Khadayat & Bishal Bhardwaj, 2019. "Improving Municipal Solid Waste Collection Services in Developing Countries: A Case of Bharatpur Metropolitan City, Nepal," Sustainability, MDPI, vol. 11(11), pages 1-17, May.
    8. Ines Winz & Gary Brierley & Sam Trowsdale, 2009. "The Use of System Dynamics Simulation in Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1301-1323, May.
    9. Hans Breukelman & Harold Krikke & Ansje Löhr, 2019. "Failing Services on Urban Waste Management in Developing Countries: A Review on Symptoms, Diagnoses, and Interventions," Sustainability, MDPI, vol. 11(24), pages 1-31, December.
    10. repec:bla:devpol:v:27:y:2009:i:6:p:675-692 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ogieriakhi, Macson O. & Wang, Xingguo, 2024. "Do mandatory environmental policies really work? A case study of California's mandatory commercial recycling law," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 915-930.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Wei & An, Haizhong & Li, Huajiao & Gao, Xiangyun & Sun, Xiaoqi & Zhong, Weiqiong, 2017. "Accessing on the sustainability of urban ecological-economic systems by means of a coupled emergy and system dynamics model: A case study of Beijing," Energy Policy, Elsevier, vol. 100(C), pages 326-337.
    2. Ali Mirchi & Kaveh Madani & David Watkins & Sajjad Ahmad, 2012. "Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2421-2442, July.
    3. Thi Thanh Thuy Phan & Van Viet Nguyen & Hong Thi Thu Nguyen & Chun-Hung Lee, 2022. "Integrating Citizens’ Importance-Performance Aspects into Sustainable Plastic Waste Management in Danang, Vietnam," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    4. Liang Liu & Cong Feng & Hongwei Zhang & Xuehua Zhang, 2015. "Game Analysis and Simulation of the River Basin Sustainable Development Strategy Integrating Water Emission Trading," Sustainability, MDPI, vol. 7(5), pages 1-21, April.
    5. Dong, Kangyin & Dong, Xiucheng & Jiang, Qingzhe & Zhao, Jun, 2021. "Assessing energy resilience and its greenhouse effect: A global perspective," Energy Economics, Elsevier, vol. 104(C).
    6. Abduraupov, Rustam & Akhmadjanova, Gulmira & Ibragimov, Abdulla & Bala, B.K. & Sidique, Shaufique F. & Makhmudov, Miraziz & Angelina, Kim, 2022. "Modeling of water management for cotton production in Uzbekistan," Agricultural Water Management, Elsevier, vol. 265(C).
    7. Jesus R. Gastelum & Ganesh Krishnamurthy & Nemesciano Ochoa & Shane Sibbett & Margie Armstrong & Parag Kalaria, 2018. "The Use of System Dynamics Model to Enhance Integrated Resources Planning Implementation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2247-2260, May.
    8. Justus Eberl & Evgenia Gordeeva & Norbert Weber, 2021. "The Policy Coherence Framework Approach in a Multi-Level Analysis of European, German and Thuringian Climate Policy with a Special Focus on Land Use, Land-Use Change and Forestry (LULUCF)," World, MDPI, vol. 2(3), pages 1-10, August.
    9. Yunfeng Hu & Batu Nacun, 2018. "An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990–2015," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    10. Marco Franchini & Ernesto Ventaglio & Alessandra Bonoli, 2011. "A Procedure for Evaluating the Compatibility of Surface Water Resources with Environmental and Human Requirements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3613-3634, November.
    11. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Erfan Goharian, 2021. "Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16246-16282, November.
    12. Sari, Dwi Amalia & Margules, Chris & Lim, Han She & Widyatmaka, Febrio & Sayer, Jeffrey & Dale, Allan & Macgregor, Colin, 2021. "Evaluating policy coherence: A case study of peatland forests on the Kampar Peninsula landscape, Indonesia," Land Use Policy, Elsevier, vol. 105(C).
    13. Xinxin Fu & Xiaofeng Wang & Jitao Zhou & Jiahao Ma, 2021. "Optimizing the Production-Living-Ecological Space for Reducing the Ecosystem Services Deficit," Land, MDPI, vol. 10(10), pages 1-17, September.
    14. Nilgun Harmancioglu & Filiz Barbaros & Cem Cetinkaya, 2013. "Sustainability Issues in Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1867-1891, April.
    15. Shifeng Fang & Lida Xu & Yunqiang Zhu & Yongqiang Liu & Zhihui Liu & Huan Pei & Jianwu Yan & Huifang Zhang, 2015. "An integrated information system for snowmelt flood early-warning based on internet of things," Information Systems Frontiers, Springer, vol. 17(2), pages 321-335, April.
    16. Ming Lu & Zhuolin Tan & Chao Yuan & Yu Dong & Wei Dong, 2023. "Resilience Measurements and Dynamics of Resource-Based Cities in Heilongjiang Province, China," Land, MDPI, vol. 12(2), pages 1-22, January.
    17. Tsai, Wen-Ping & Cheng, Chung-Lien & Uen, Tinn-Shuan & Zhou, Yanlai & Chang, Fi-John, 2019. "Drought mitigation under urbanization through an intelligent water allocation system," Agricultural Water Management, Elsevier, vol. 213(C), pages 87-96.
    18. Xian’En Wang & Wei Zhan & Shuo Wang, 2020. "Uncertain Water Environment Carrying Capacity Simulation Based on the Monte Carlo Method–System Dynamics Model: A Case Study of Fushun City," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    19. Faisal A. Osra & Huseyin Kurtulus Ozcan & Jaber S. Alzahrani & Mohammad S. Alsoufi, 2021. "Municipal Solid Waste Characterization and Landfill Gas Generation in Kakia Landfill, Makkah," Sustainability, MDPI, vol. 13(3), pages 1-13, January.
    20. Wang Xiao-jun & Zhang Jian-yun & Wang Jian-hua & He Rui-min & Amgad ElMahdi & Liu Jin-hua & Wang Xin-gong & David King & Shamsuddin Shahid, 2014. "Climate change and water resources management in Tuwei river basin of Northwest China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(1), pages 107-120, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4595-:d:539973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.