IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v25y2011i14p3613-3634.html
   My bibliography  Save this article

A Procedure for Evaluating the Compatibility of Surface Water Resources with Environmental and Human Requirements

Author

Listed:
  • Marco Franchini
  • Ernesto Ventaglio
  • Alessandra Bonoli

Abstract

This paper presents a novel and easy-to-use procedure for controlling and licensing water abstractions from a river based on establishing a balance between surface water resources and environmental and human requirements. Unlike other approaches relying on complex and detailed basin models, this is based simply on the use of the discharge duration curve to represent the available water resources. In particular, the scheme of analysis presented here is composed of four steps: 1) subdivision of a particular river reach into sub-reaches; 2) estimation of the availability of water along each sub-reach over a particular period of time by means of duration curves; 3) estimation of the environmental requirements (minimum instream flow—MIF) and quantities necessary for civil, agricultural and industrial uses over the same period, and 4) establishing a water balance model for each sub-reach, taking into consideration the effects produced by water resource use in the upstream sub-reaches. In particular, this procedure consents (a) quantification of the duration when abstractions are possible along each sub-reach, (b) quantification of the maximum abstraction needed to satisfy the volume requested (thereby enabling comparison with the amount the users can actually obtain through their structures and/or pumps) and (c) identification of situations in which users need to avail themselves of reservoirs for temporarily storing the water abstracted so that they do not exceed the availability on non-abstraction days. The procedure was successfully applied to a basin located in Emilia-Romagna, the Enza River, along which 9 sub-reaches were identified. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Marco Franchini & Ernesto Ventaglio & Alessandra Bonoli, 2011. "A Procedure for Evaluating the Compatibility of Surface Water Resources with Environmental and Human Requirements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3613-3634, November.
  • Handle: RePEc:spr:waterr:v:25:y:2011:i:14:p:3613-3634
    DOI: 10.1007/s11269-011-9873-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-011-9873-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-011-9873-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ines Winz & Gary Brierley & Sam Trowsdale, 2009. "The Use of System Dynamics Simulation in Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1301-1323, May.
    2. Ioannis Niadas & Panos Mentzelopoulos, 2008. "Probabilistic Flow Duration Curves for Small Hydro Plant Design and Performance Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(4), pages 509-523, April.
    3. Paolo Vezza & Claudio Comoglio & Maurizio Rosso & Alberto Viglione, 2010. "Low Flows Regionalization in North-Western Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4049-4074, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre Razurel & Lorenzo Gorla & Benoît Crouzy & Paolo Perona, 2016. "Non-proportional Repartition Rules Optimize Environmental Flows and Energy Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 207-223, January.
    2. Stefano Casadei & Arnaldo Pierleoni & Michele Bellezza, 2018. "Sustainability of Water Withdrawals in the Tiber River Basin (Central Italy)," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    3. Jinglu Wu & Haiao Zeng & Hong Yu & Long Ma & Longsheng Xu & Boqiang Qin, 2012. "Water and Sediment Quality in Lakes along the Middle and Lower Reaches of the Yangtze River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3601-3618, September.
    4. Wenping Yuan & Shuguang Liu & Shunlin Liang & Zhengxi Tan & Heping Liu & Claudia Young, 2012. "Estimations of Evapotranspiration and Water Balance with Uncertainty over the Yukon River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2147-2157, June.
    5. Changwen Li & Ling Kang, 2014. "A New Modified Tennant Method with Spatial-Temporal Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 4911-4926, November.
    6. Pierre Razurel & Lorenzo Gorla & Benoît Crouzy & Paolo Perona, 2016. "Non-proportional Repartition Rules Optimize Environmental Flows and Energy Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 207-223, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Liu & Cong Feng & Hongwei Zhang & Xuehua Zhang, 2015. "Game Analysis and Simulation of the River Basin Sustainable Development Strategy Integrating Water Emission Trading," Sustainability, MDPI, vol. 7(5), pages 1-21, April.
    2. Abduraupov, Rustam & Akhmadjanova, Gulmira & Ibragimov, Abdulla & Bala, B.K. & Sidique, Shaufique F. & Makhmudov, Miraziz & Angelina, Kim, 2022. "Modeling of water management for cotton production in Uzbekistan," Agricultural Water Management, Elsevier, vol. 265(C).
    3. Jesus R. Gastelum & Ganesh Krishnamurthy & Nemesciano Ochoa & Shane Sibbett & Margie Armstrong & Parag Kalaria, 2018. "The Use of System Dynamics Model to Enhance Integrated Resources Planning Implementation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2247-2260, May.
    4. Angela Dikou, 2024. "Competence in Unsustainability Resolution—A New Paradigm," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    5. Patricia Chica-Morales & Victor F. Muñoz & Antonio J. Domenech, 2021. "System Dynamics as Ex Ante Impact Assessment Tool in International Development Cooperation: Study Case of Urban Sustainability Policies in Darkhan, Mongolia," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
    6. Xian’En Wang & Wei Zhan & Shuo Wang, 2020. "Uncertain Water Environment Carrying Capacity Simulation Based on the Monte Carlo Method–System Dynamics Model: A Case Study of Fushun City," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    7. Wang Xiao-jun & Zhang Jian-yun & Wang Jian-hua & He Rui-min & Amgad ElMahdi & Liu Jin-hua & Wang Xin-gong & David King & Shamsuddin Shahid, 2014. "Climate change and water resources management in Tuwei river basin of Northwest China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(1), pages 107-120, January.
    8. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    9. Miao Yu & Dong Liu & Jean Dieu Bazimenyera, 2013. "Diagnostic Complexity of Regional Groundwater Resources System Based on time series fractal dimension and Artificial Fish Swarm Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1897-1911, May.
    10. Chao Bao & Dongmei He, 2019. "Scenario Modeling of Urbanization Development and Water Scarcity Based on System Dynamics: A Case Study of Beijing–Tianjin–Hebei Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    11. Arnim Wiek & Kelli Larson, 2012. "Water, People, and Sustainability—A Systems Framework for Analyzing and Assessing Water Governance Regimes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3153-3171, September.
    12. Barelli, L. & Liucci, L. & Ottaviano, A. & Valigi, D., 2013. "Mini-hydro: A design approach in case of torrential rivers," Energy, Elsevier, vol. 58(C), pages 695-706.
    13. Teresa Torregrosa & Martín Sevilla & Borja Montaño & Victoria López-Vico, 2010. "The Integrated Management of Water Resources in Marina Baja (Alicante, Spain). A Simultaneous Equation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3799-3815, November.
    14. Baifus Manke, Emanuele & Nörenberg, Bernardo Gomes & Faria, Lessandro Coll & Tarjuelo, José Maria & Colombo, Alberto & Chagas Neta, Maria Clotilde Carré & Parfitt, José Maria Barbat, 2019. "Wind drift and evaporation losses of a mechanical lateral-move irrigation system: Oscillating plate versus fixed spray plate sprinklers," Agricultural Water Management, Elsevier, vol. 225(C).
    15. Ye, Gui & Yuan, Hongping & Shen, Liyin & Wang, Hongxia, 2012. "Simulating effects of management measures on the improvement of the environmental performance of construction waste management," Resources, Conservation & Recycling, Elsevier, vol. 62(C), pages 56-63.
    16. Fang, Wei & An, Haizhong & Li, Huajiao & Gao, Xiangyun & Sun, Xiaoqi & Zhong, Weiqiong, 2017. "Accessing on the sustainability of urban ecological-economic systems by means of a coupled emergy and system dynamics model: A case study of Beijing," Energy Policy, Elsevier, vol. 100(C), pages 326-337.
    17. Wang, Geng & Feng, Yan, 2024. "Analysis of carbon emission drivers and peak carbon forecasts for island economies," Ecological Modelling, Elsevier, vol. 489(C).
    18. Benjamin L. Turner & Vincent Tidwell & Alexander Fernald & José A. Rivera & Sylvia Rodriguez & Steven Guldan & Carlos Ochoa & Brian Hurd & Kenneth Boykin & Andres Cibils, 2016. "Modeling Acequia Irrigation Systems Using System Dynamics: Model Development, Evaluation, and Sensitivity Analyses to Investigate Effects of Socio-Economic and Biophysical Feedbacks," Sustainability, MDPI, vol. 8(10), pages 1-30, October.
    19. Flavia Tromboni & Lucia Bortolini & José Morábito, 2014. "Integrated hydrologic–economic decision support system for groundwater use confronting climate change uncertainties in the Tunuyán River basin, Argentina," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(6), pages 1317-1336, December.
    20. Ali Bagheri & Moosa Darijani & Ali Asgary & Saeed Morid, 2010. "Crisis in Urban Water Systems during the Reconstruction Period: A System Dynamics Analysis of Alternative Policies after the 2003 Earthquake in Bam-Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2567-2596, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:25:y:2011:i:14:p:3613-3634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.