IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4436-d537019.html
   My bibliography  Save this article

Improving Energy Efficiency in Buildings Using an Interactive Mathematical Programming Approach

Author

Listed:
  • Christina Diakaki

    (School of Production Engineering and Management, Technical University of Crete, 73100 Chania, Greece
    School of Social Sciences, Hellenic Open University, 26335 Patra, Greece)

  • Evangelos Grigoroudis

    (School of Production Engineering and Management, Technical University of Crete, 73100 Chania, Greece)

Abstract

Improving energy efficiency in buildings is a major priority and challenge worldwide. The employed measures vary in nature, and the decision analyst, who is typically the architect, the engineer, or the building expert that has undertaken the task to suggest energy efficient solutions, faces a complex decision problem comprising numerous decision variables and multiple, usually competitive objectives. The solution of such multi-objective problems typically involves some sort of objectives aggregation, which reflects the preferences of the involved final decision maker that is the building’s user, occupant, and/or owner. The preferences elicitation, however, is a difficult task, and this paper aims to provide an interactive framework that will allow their consideration in a relatively easy manner. More specifically, a mathematical programming approach is proposed herein, which allows the elicitation and incorporation of the decision maker’s preferences in the decision model via the assessment of his/her utility function with the assistance of the multicriteria decision aid method UTASTAR. To study the feasibility and efficiency of the proposed approach, the case of a simple building is examined as an application example. The study results suggest that the proposed approach is capable of helping the decision analyst to suggest energy measures that satisfy, as much as possible, the decision maker’s preferences, without having to precisely prescribe them beforehand.

Suggested Citation

  • Christina Diakaki & Evangelos Grigoroudis, 2021. "Improving Energy Efficiency in Buildings Using an Interactive Mathematical Programming Approach," Sustainability, MDPI, vol. 13(8), pages 1-25, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4436-:d:537019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4436/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4436/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diakaki, Christina & Grigoroudis, Evangelos & Kabelis, Nikos & Kolokotsa, Dionyssia & Kalaitzakis, Kostas & Stavrakakis, George, 2010. "A multi-objective decision model for the improvement of energy efficiency in buildings," Energy, Elsevier, vol. 35(12), pages 5483-5496.
    2. Karmellos, M. & Kiprakis, A. & Mavrotas, G., 2015. "A multi-objective approach for optimal prioritization of energy efficiency measures in buildings: Model, software and case studies," Applied Energy, Elsevier, vol. 139(C), pages 131-150.
    3. Diakaki, Christina & Grigoroudis, Evangelos & Kolokotsa, Dionyssia, 2013. "Performance study of a multi-objective mathematical programming modelling approach for energy decision-making in buildings," Energy, Elsevier, vol. 59(C), pages 534-542.
    4. Lee, Sang Hoon & Hong, Tianzhen & Piette, Mary Ann & Taylor-Lange, Sarah C., 2015. "Energy retrofit analysis toolkits for commercial buildings: A review," Energy, Elsevier, vol. 89(C), pages 1087-1100.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henze, Gregor P. & Pavlak, Gregory S. & Florita, Anthony R. & Dodier, Robert H. & Hirsch, Adam I., 2015. "An energy signal tool for decision support in building energy systems," Applied Energy, Elsevier, vol. 138(C), pages 51-70.
    2. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    3. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    4. Yujie Xu & Vivian Loftness & Edson Severnini, 2021. "Using Machine Learning to Predict Retrofit Effects for a Commercial Building Portfolio," Energies, MDPI, vol. 14(14), pages 1-24, July.
    5. Panagiotis Kontogiorgos & Nikolaos Chrysanthopoulos & George P. Papavassilopoulos, 2018. "A Mixed-Integer Programming Model for Assessing Energy-Saving Investments in Domestic Buildings under Uncertainty," Energies, MDPI, vol. 11(4), pages 1-14, April.
    6. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    7. Wu, Raphael & Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2017. "Multiobjective optimisation of energy systems and building envelope retrofit in a residential community," Applied Energy, Elsevier, vol. 190(C), pages 634-649.
    8. Rachael Sherman & Hariharan Naganathan & Kristen Parrish, 2021. "Energy Savings Results from Small Commercial Building Retrofits in the US," Energies, MDPI, vol. 14(19), pages 1-16, September.
    9. Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
    10. Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
    11. Pikas, Ergo & Thalfeldt, Martin & Kurnitski, Jarek & Liias, Roode, 2015. "Extra cost analyses of two apartment buildings for achieving nearly zero and low energy buildings," Energy, Elsevier, vol. 84(C), pages 623-633.
    12. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    13. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    14. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    15. Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    16. Lešnik, Maja & Kravanja, Stojan & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2020. "Optimal design of timber-glass upgrade modules for vertical building extension from the viewpoints of energy efficiency and visual comfort," Applied Energy, Elsevier, vol. 270(C).
    17. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    18. Thrampoulidis, Emmanouil & Mavromatidis, Georgios & Lucchi, Aurelien & Orehounig, Kristina, 2021. "A machine learning-based surrogate model to approximate optimal building retrofit solutions," Applied Energy, Elsevier, vol. 281(C).
    19. D'Alessandro, Antonella & Pisello, Anna Laura & Fabiani, Claudia & Ubertini, Filippo & Cabeza, Luisa F. & Cotana, Franco, 2018. "Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation," Applied Energy, Elsevier, vol. 212(C), pages 1448-1461.
    20. Raatikainen, Mika & Skön, Jukka-Pekka & Leiviskä, Kauko & Kolehmainen, Mikko, 2016. "Intelligent analysis of energy consumption in school buildings," Applied Energy, Elsevier, vol. 165(C), pages 416-429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4436-:d:537019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.