IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2927-d512901.html
   My bibliography  Save this article

Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach

Author

Listed:
  • Alessia Buda

    (Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, 20133 Milano, Italy)

  • Ernst Jan de Place Hansen

    (Department of the Built Environment, Aalborg University (AAU), 2450 Copenhagen, Denmark)

  • Alexander Rieser

    (Department of Energy-Efficient Buildings, University of Innsbruck, 6020 Innsbruck, Austria)

  • Emanuela Giancola

    (Department of Energy, Centro de Investigaciones Energéticas, Medioambientales y Tecnológica (CIEMAT), 28040 Madrid, Spain)

  • Valeria Natalina Pracchi

    (Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, 20133 Milano, Italy)

  • Sara Mauri

    (Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, 20133 Milano, Italy)

  • Valentina Marincioni

    (Bartlett School of Environment, Energy and Resources (BSEER), University College London, London WC1H 0NN, UK)

  • Virginia Gori

    (Bartlett School of Environment, Energy and Resources (BSEER), University College London, London WC1H 0NN, UK)

  • Kalliopi Fouseki

    (Bartlett School of Environment, Energy and Resources (BSEER), University College London, London WC1H 0NN, UK)

  • Cristina S. Polo López

    (Department for Environment Construction and Design (DACD), Institute for Applied Sustainability to the Built Environment (ISAAC), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6850 Mendrisio, Switzerland)

  • Alessandro Lo Faro

    (Department of Civil Engineering and Architecture, Università di Catania, 95125 Catania, Italy)

  • Aitziber Egusquiza

    (TECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain)

  • Franziska Haas

    (Eurac Research, Institute for Renewable Energy, 39100 Bolzano, Italy)

  • Eleonora Leonardi

    (Eurac Research, Institute for Renewable Energy, 39100 Bolzano, Italy)

  • Daniel Herrera-Avellanosa

    (Eurac Research, Institute for Renewable Energy, 39100 Bolzano, Italy)

Abstract

Historic, listed, or unlisted, buildings account for 30% of the European building stock. Since they are complex systems of cultural, architectural, and identity value, they need particular attention to ensure that they are preserved, used, and managed over time in a sustainable way. This implies a demand for retrofit solutions able to improve indoor thermal conditions while reducing the use of energy sources and preserving the heritage significance. Often, however, the choice and implementation of retrofit solutions in historic buildings is limited by socio-technical barriers (regulations, lack of knowledge on the hygrothermal behaviour of built heritage, economic viability, etc.). This paper presents the approach devised in the IEA-SHC Task 59 project (Renovating Historic Buildings Towards Zero Energy) to support decision makers in selecting retrofit solutions, in accordance with the provision of the EN 16883:2017 standard. In particular, the method followed by the project partners to gather and assess compatible solutions for historic buildings retrofitting is presented. It focuses on best practices for walls, windows, HVAC systems, and solar technologies. This work demonstrates that well-balanced retrofit solutions can exist and can be evaluated case-by-case through detailed assessment criteria. As a main result, the paper encourages decision makers to opt for tailored energy retrofit to solve the conflict between conservation and energy performance requirements.

Suggested Citation

  • Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2927-:d:512901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2927/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2927/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. Webb, Amanda L., 2017. "Energy retrofits in historic and traditional buildings: A review of problems and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 748-759.
    3. Martínez-Molina, Antonio & Tort-Ausina, Isabel & Cho, Soolyeon & Vivancos, José-Luis, 2016. "Energy efficiency and thermal comfort in historic buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 70-85.
    4. Valentina Marincioni & Virginia Gori & Ernst Jan de Place Hansen & Daniel Herrera-Avellanosa & Sara Mauri & Emanuela Giancola & Aitziber Egusquiza & Alessia Buda & Eleonora Leonardi & Alexander Rieser, 2021. "How Can Scientific Literature Support Decision-Making in the Renovation of Historic Buildings? An Evidence-Based Approach for Improving the Performance of Walls," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    5. Ferretti, Valentina & Guney, Sule & Montibeller, Gilberto & Winterfeldt, Detlof von, 2016. "Testing best practices to reduce the overconfidence bias in multi-criteria decision analysis," LSE Research Online Documents on Economics 67179, London School of Economics and Political Science, LSE Library.
    6. Alexander Rieser & Rainer Pfluger & Alexandra Troi & Daniel Herrera-Avellanosa & Kirsten Engelund Thomsen & Jørgen Rose & Zeynep Durmuş Arsan & Gulden Gokcen Akkurt & Gerhard Kopeinig & Gaëlle Guyot &, 2021. "Integration of Energy-Efficient Ventilation Systems in Historic Buildings—Review and Proposal of a Systematic Intervention Approach," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    7. Lee, Sang Hoon & Hong, Tianzhen & Piette, Mary Ann & Taylor-Lange, Sarah C., 2015. "Energy retrofit analysis toolkits for commercial buildings: A review," Energy, Elsevier, vol. 89(C), pages 1087-1100.
    8. Pisello, Anna Laura & Petrozzi, Alessandro & Castaldo, Veronica Lucia & Cotana, Franco, 2016. "On an innovative integrated technique for energy refurbishment of historical buildings: Thermal-energy, economic and environmental analysis of a case study," Applied Energy, Elsevier, vol. 162(C), pages 1313-1322.
    9. Pierfrancesco Fiore & Enrico Sicignano & Giuseppe Donnarumma, 2020. "An AHP-Based Methodology for the Evaluation and Choice of Integrated Interventions on Historic Buildings," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eleonora Laurini & Mariangela De Vita & Pierluigi De Berardinis, 2021. "Monitoring the Indoor Air Quality: A Case Study of Passive Cooling from Historical Hypogeal Rooms," Energies, MDPI, vol. 14(9), pages 1-15, April.
    2. Sanjin Gumbarević & Bojan Milovanović & Bojana Dalbelo Bašić & Mergim Gaši, 2022. "Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement," Energies, MDPI, vol. 15(14), pages 1-19, July.
    3. Lorenzo Diana & Saverio D’Auria & Giovanna Acampa & Giorgia Marino, 2022. "Assessment of Disused Public Buildings: Strategies and Tools for Reuse of Healthcare Structures," Sustainability, MDPI, vol. 14(4), pages 1-25, February.
    4. Belén Onecha & Alicia Dotor & Carlos Marmolejo-Duarte, 2021. "Beyond Cultural and Historic Values, Sustainability as a New Kind of Value for Historic Buildings," Sustainability, MDPI, vol. 13(15), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina S. Polo López & Elena Lucchi & Eleonora Leonardi & Antonello Durante & Anne Schmidt & Roger Curtis, 2021. "Risk-Benefit Assessment Scheme for Renewable Solar Solutions in Traditional and Historic Buildings," Sustainability, MDPI, vol. 13(9), pages 1-35, May.
    2. Egusquiza, A. & Ginestet, S. & Espada, J.C. & Flores-Abascal, I. & Garcia-Gafaro, C. & Giraldo-Soto, C. & Claude, S. & Escadeillas, G., 2021. "Co-creation of local eco-rehabilitation strategies for energy improvement of historic urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Gireesh Nair & Leo Verde & Thomas Olofsson, 2022. "A Review on Technical Challenges and Possibilities on Energy Efficient Retrofit Measures in Heritage Buildings," Energies, MDPI, vol. 15(20), pages 1-20, October.
    4. Mariangela De Vita & Giulia Massari & Pierluigi De Berardinis, 2020. "Retrofit Methodology Based on Energy Simulation Modeling Applied for the Enhancement of a Historical Building in L’Aquila," Energies, MDPI, vol. 13(12), pages 1-26, June.
    5. Elnaz Farjami & Özlem Olgaç Türker, 2021. "The Extraction of Prerequisite Criteria for Environmentally Certified Adaptive Reuse of Heritage Buildings," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    6. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    7. Valentina Marincioni & Virginia Gori & Ernst Jan de Place Hansen & Daniel Herrera-Avellanosa & Sara Mauri & Emanuela Giancola & Aitziber Egusquiza & Alessia Buda & Eleonora Leonardi & Alexander Rieser, 2021. "How Can Scientific Literature Support Decision-Making in the Renovation of Historic Buildings? An Evidence-Based Approach for Improving the Performance of Walls," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    8. Henrik Engelbrecht Foldager & Rasmus Camillus Jeppesen & Muhyiddine Jradi, 2019. "DanRETRO: A Decision-Making Tool for Energy Retrofit Design and Assessment of Danish Buildings," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    9. Pochwała, Sławomir & Anweiler, Stanisław & Tańczuk, Mariusz & Klementowski, Igor & Przysiężniuk, Dawid & Adrian, Łukasz & McNamara, Greg & Stevanović, Žana, 2023. "Energy source impact on the economic and environmental effects of retrofitting a heritage building with a heat pump system," Energy, Elsevier, vol. 278(PB).
    10. Belén Onecha & Alicia Dotor & Carlos Marmolejo-Duarte, 2021. "Beyond Cultural and Historic Values, Sustainability as a New Kind of Value for Historic Buildings," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    11. Laura Balaguer & Fernando Vegas López-Manzanares & Camilla Mileto & Lidia García-Soriano, 2019. "Assessment of the Thermal Behaviour of Rammed Earth Walls in the Summer Period," Sustainability, MDPI, vol. 11(7), pages 1-12, April.
    12. Mirco Andreotti & Dario Bottino-Leone & Marta Calzolari & Pietromaria Davoli & Luisa Dias Pereira & Elena Lucchi & Alexandra Troi, 2020. "Applied Research of the Hygrothermal Behaviour of an Internally Insulated Historic Wall without Vapour Barrier: In Situ Measurements and Dynamic Simulations," Energies, MDPI, vol. 13(13), pages 1-22, July.
    13. Blázquez, Teresa & Ferrari, Simone & Suárez, Rafael & Sendra, Juan José, 2019. "Adaptive approach-based assessment of a heritage residential complex in southern Spain for improving comfort and energy efficiency through passive strategies: A study based on a monitored flat," Energy, Elsevier, vol. 181(C), pages 504-520.
    14. Lingjun Hao & Daniel Herrera-Avellanosa & Claudio Del Pero & Alexandra Troi, 2020. "What Are the Implications of Climate Change for Retrofitted Historic Buildings? A Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    15. Nenad Šekularac & Jelena Ivanović-Šekularac & Aleksandar Petrovski & Nikola Macut & Milan Radojević, 2020. "Restoration of a Historic Building in Order to Improve Energy Efficiency and Energy Saving—Case Study—The Dining Room within the Žiča Monastery Property," Sustainability, MDPI, vol. 12(15), pages 1-21, August.
    16. Pierfrancesco Fiore & Enrico Sicignano & Giuseppe Donnarumma, 2020. "An AHP-Based Methodology for the Evaluation and Choice of Integrated Interventions on Historic Buildings," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    17. Lešnik, Maja & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2018. "Design parameters of the timber-glass upgrade module and the existing building: Impact on the energy-efficient refurbishment process," Energy, Elsevier, vol. 162(C), pages 1125-1138.
    18. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    19. Nora Munguia & Javier Esquer & Hector Guzman & Janim Herrera & Jesus Gutierrez-Ruelas & Luis Velazquez, 2020. "Energy Efficiency in Public Buildings: A Step toward the UN 2030 Agenda for Sustainable Development," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    20. Cho, Hyun Mi & Yun, Beom Yeol & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Optimal energy retrofit plan for conservation and sustainable use of historic campus building: Case of cultural property building," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2927-:d:512901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.