IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v89y2015icp1087-1100.html
   My bibliography  Save this article

Energy retrofit analysis toolkits for commercial buildings: A review

Author

Listed:
  • Lee, Sang Hoon
  • Hong, Tianzhen
  • Piette, Mary Ann
  • Taylor-Lange, Sarah C.

Abstract

Retrofit analysis toolkits can be used to optimize energy or cost savings from retrofit strategies, accelerating the adoption of ECMs (energy conservation measures) in buildings. This paper provides an up-to-date review of the features and capabilities of 18 energy retrofit toolkits, including ECMs and the calculation engines. The fidelity of the calculation techniques, a driving component of retrofit toolkits, were evaluated. An evaluation of the issues that hinder effective retrofit analysis in terms of accessibility, usability, data requirement, and the application of efficiency measures, provides valuable insights into advancing the field forward. Following this review the general concepts were determined: (1) toolkits developed primarily in the private sector use empirically data-driven methods or benchmarking to provide ease of use, (2) almost all of the toolkits which used EnergyPlus or DOE-2 were freely accessible, but suffered from complexity, longer data input and simulation run time, (3) in general, there appeared to be a fine line between having too much detail resulting in a long analysis time or too little detail which sacrificed modeling fidelity. These insights provide an opportunity to enhance the design and development of existing and new retrofit toolkits in the future.

Suggested Citation

  • Lee, Sang Hoon & Hong, Tianzhen & Piette, Mary Ann & Taylor-Lange, Sarah C., 2015. "Energy retrofit analysis toolkits for commercial buildings: A review," Energy, Elsevier, vol. 89(C), pages 1087-1100.
  • Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:1087-1100
    DOI: 10.1016/j.energy.2015.06.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215008683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Tianzhen & Yang, Le & Hill, David & Feng, Wei, 2014. "Data and analytics to inform energy retrofit of high performance buildings," Applied Energy, Elsevier, vol. 126(C), pages 90-106.
    2. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    3. Pacheco, R. & Ordóñez, J. & Martínez, G., 2012. "Energy efficient design of building: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3559-3573.
    4. Ranjan K. Bose, 2010. "Energy Efficient Cities : Assessment Tools and Benchmarking Practices," World Bank Publications - Books, The World Bank Group, number 2449.
    5. Remer, Donald S. & Nieto, Armando P., 1995. "A compendium and comparison of 25 project evaluation techniques. Part 1: Net present value and rate of return methods," International Journal of Production Economics, Elsevier, vol. 42(1), pages 79-96, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raatikainen, Mika & Skön, Jukka-Pekka & Leiviskä, Kauko & Kolehmainen, Mikko, 2016. "Intelligent analysis of energy consumption in school buildings," Applied Energy, Elsevier, vol. 165(C), pages 416-429.
    2. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    3. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
    4. Rafiee, A. & Dias, E. & Koomen, E., 2019. "Analysing the impact of spatial context on the heat consumption of individual households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 461-470.
    5. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    6. Soutullo, S. & Giancola, E. & Heras, M.R., 2018. "Dynamic energy assessment to analyze different refurbishment strategies of existing dwellings placed in Madrid," Energy, Elsevier, vol. 152(C), pages 1011-1023.
    7. Zhaoxia Wang & Yan Ding & Huiyan Deng & Fan Yang & Neng Zhu, 2018. "An Occupant-Oriented Calculation Method of Building Interior Cooling Load Design," Sustainability, MDPI, vol. 10(6), pages 1-29, May.
    8. Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
    9. Hong, Tianzhen & Piette, Mary Ann & Chen, Yixing & Lee, Sang Hoon & Taylor-Lange, Sarah C. & Zhang, Rongpeng & Sun, Kaiyu & Price, Phillip, 2015. "Commercial Building Energy Saver: An energy retrofit analysis toolkit," Applied Energy, Elsevier, vol. 159(C), pages 298-309.
    10. Cai, Wei & Wen, Xiaodong & Li, Chaoen & Shao, Jingjing & Xu, Jianguo, 2023. "Predicting the energy consumption in buildings using the optimized support vector regression model," Energy, Elsevier, vol. 273(C).
    11. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    12. Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    13. Miguel Ángel Rodríguez López & Diego Rodríguez Rodríguez, 2024. "La aplicación de datos masivos en economía de la energía: una revisión," Working Papers 2024-08, FEDEA.
    14. Re Cecconi, F. & Moretti, N. & Tagliabue, L.C., 2019. "Application of artificial neutral network and geographic information system to evaluate retrofit potential in public school buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 266-277.
    15. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    16. Xavier Serrano-Guerrero & Guillermo Escrivá-Escrivá & Santiago Luna-Romero & Jean-Michel Clairand, 2020. "A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles," Energies, MDPI, vol. 13(5), pages 1-23, February.
    17. Liangwen Yan & Fengfeng Qian & Wei Li, 2018. "Research on Key Parameters Operation Range of Central Air Conditioning Based on Binary K-Means and Apriori Algorithm," Energies, MDPI, vol. 12(1), pages 1-13, December.
    18. Francesco Cappa & Fausto Del Sette & Darren Hayes & Federica Rosso, 2016. "How to Deliver Open Sustainable Innovation: An Integrated Approach for a Sustainable Marketable Product," Sustainability, MDPI, vol. 8(12), pages 1-14, December.
    19. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
    20. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:89:y:2015:i:c:p:1087-1100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.