IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v59y2013icp534-542.html
   My bibliography  Save this article

Performance study of a multi-objective mathematical programming modelling approach for energy decision-making in buildings

Author

Listed:
  • Diakaki, Christina
  • Grigoroudis, Evangelos
  • Kolokotsa, Dionyssia

Abstract

The improvement of energy efficiency in buildings is among the first priorities worldwide. To this end, several measures are available, and the decision maker faces a decision problem with multiple objectives having to compensate several energy, financial, and other factors in order to make a satisfactory selection. To solve this problem, a decision modelling approach is proposed herein, based upon the principles of multi-objective mathematical programming, thus capturing only these elements, which affect the decisions to be taken. To evaluate its performance under realistic operational conditions in a building, the proposed approach is applied to an existing building for retrofit purposes, and several simulation investigations are performed in order to study and evaluate the quality of the retrofit alternatives proposed by the decision model. The results of these simulation investigations confirm, that despite its reduced precision compared to the corresponding simulation model of the building, the decision model allows for the realistic comparative evaluation of the considered alternatives. The example case study reported herein, demonstrates also the functionality of the proposed approach, exploits its qualities, and highlights its strengths, weaknesses and limitations.

Suggested Citation

  • Diakaki, Christina & Grigoroudis, Evangelos & Kolokotsa, Dionyssia, 2013. "Performance study of a multi-objective mathematical programming modelling approach for energy decision-making in buildings," Energy, Elsevier, vol. 59(C), pages 534-542.
  • Handle: RePEc:eee:energy:v:59:y:2013:i:c:p:534-542
    DOI: 10.1016/j.energy.2013.07.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213006397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.07.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Radhi, H., 2010. "On the optimal selection of wall cladding system to reduce direct and indirect CO2 emissions," Energy, Elsevier, vol. 35(3), pages 1412-1424.
    2. Martinaitis, Vytautas & Kazakevicius, Eduardas & Vitkauskas, Aloyzas, 2007. "A two-factor method for appraising building renovation and energy efficiency improvement projects," Energy Policy, Elsevier, vol. 35(1), pages 192-201, January.
    3. Chantrelle, Fanny Pernodet & Lahmidi, Hicham & Keilholz, Werner & Mankibi, Mohamed El & Michel, Pierre, 2011. "Development of a multicriteria tool for optimizing the renovation of buildings," Applied Energy, Elsevier, vol. 88(4), pages 1386-1394, April.
    4. Diakaki, Christina & Grigoroudis, Evangelos & Kabelis, Nikos & Kolokotsa, Dionyssia & Kalaitzakis, Kostas & Stavrakakis, George, 2010. "A multi-objective decision model for the improvement of energy efficiency in buildings," Energy, Elsevier, vol. 35(12), pages 5483-5496.
    5. Florides, G.A & Kalogirou, S.A & Tassou, S.A & Wrobel, L.C, 2000. "Modeling of the modern houses of Cyprus and energy consumption analysis," Energy, Elsevier, vol. 25(10), pages 915-937.
    6. Radhi, H., 2009. "Can envelope codes reduce electricity and CO2 emissions in different types of buildings in the hot climate of Bahrain?," Energy, Elsevier, vol. 34(2), pages 205-215.
    7. Chua, K.J. & Chou, S.K., 2010. "Energy performance of residential buildings in Singapore," Energy, Elsevier, vol. 35(2), pages 667-678.
    8. Andrew Horsley & Chris France & Barry Quatermass, 2003. "Delivering energy efficient buildings: a design procedure to demonstrate environmental and economic benefits," Construction Management and Economics, Taylor & Francis Journals, vol. 21(4), pages 345-356.
    9. Marszal, Anna Joanna & Heiselberg, Per, 2011. "Life cycle cost analysis of a multi-storey residential Net Zero Energy Building in Denmark," Energy, Elsevier, vol. 36(9), pages 5600-5609.
    10. Chinese, Damiana & Nardin, Gioacchino & Saro, Onorio, 2011. "Multi-criteria analysis for the selection of space heating systems in an industrial building," Energy, Elsevier, vol. 36(1), pages 556-565.
    11. Anastaselos, Dimitrios & Theodoridou, Ifigeneia & Papadopoulos, Agis M. & Hegger, Manfred, 2011. "Integrated evaluation of radiative heating systems for residential buildings," Energy, Elsevier, vol. 36(7), pages 4207-4215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing, Rui & Kuriyan, Kamal & Lin, Jian & Shah, Nilay & Zhao, Yingru, 2020. "Quantifying the contribution of individual technologies in integrated urban energy systems – A system value approach," Applied Energy, Elsevier, vol. 266(C).
    2. Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
    3. Christina Diakaki & Evangelos Grigoroudis, 2021. "Improving Energy Efficiency in Buildings Using an Interactive Mathematical Programming Approach," Sustainability, MDPI, vol. 13(8), pages 1-25, April.
    4. I. Argyriou & N. Sifakis & T. Tsoutsos, 2022. "Ranking measures to improve the sustainability of Mediterranean ports based on multicriteria decision analysis: a case study of Souda port, Chania, Crete," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6449-6466, May.
    5. Wu, Raphael & Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2017. "Multiobjective optimisation of energy systems and building envelope retrofit in a residential community," Applied Energy, Elsevier, vol. 190(C), pages 634-649.
    6. Deng, Qianli & Jiang, Xianglin & Cui, Qingbin & Zhang, Limao, 2015. "Strategic design of cost savings guarantee in energy performance contracting under uncertainty," Applied Energy, Elsevier, vol. 139(C), pages 68-80.
    7. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    8. Wen-Hsien Tsai & Chih-Hao Yang & Cheng-Tsu Huang & Yen-Ying Wu, 2017. "The impact of the carbon tax policy on green building strategy," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(8), pages 1412-1438, August.
    9. Henze, Gregor P. & Pavlak, Gregory S. & Florita, Anthony R. & Dodier, Robert H. & Hirsch, Adam I., 2015. "An energy signal tool for decision support in building energy systems," Applied Energy, Elsevier, vol. 138(C), pages 51-70.
    10. Pikas, Ergo & Thalfeldt, Martin & Kurnitski, Jarek & Liias, Roode, 2015. "Extra cost analyses of two apartment buildings for achieving nearly zero and low energy buildings," Energy, Elsevier, vol. 84(C), pages 623-633.
    11. Wang, Meng & Yu, Hang & Yang, Yikun & Lin, Xiaoyu & Guo, Haijin & Li, Chaoen & Zhou, Yue & Jing, Rui, 2021. "Unlocking emerging impacts of carbon tax on integrated energy systems through supply and demand co-optimization," Applied Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diakaki, Christina & Grigoroudis, Evangelos & Kabelis, Nikos & Kolokotsa, Dionyssia & Kalaitzakis, Kostas & Stavrakakis, George, 2010. "A multi-objective decision model for the improvement of energy efficiency in buildings," Energy, Elsevier, vol. 35(12), pages 5483-5496.
    2. Ferreira, Joaquim & Pinheiro, Manuel Duarte & Brito, Jorge de, 2013. "Refurbishment decision support tools review—Energy and life cycle as key aspects to sustainable refurbishment projects," Energy Policy, Elsevier, vol. 62(C), pages 1453-1460.
    3. Karmellos, M. & Kiprakis, A. & Mavrotas, G., 2015. "A multi-objective approach for optimal prioritization of energy efficiency measures in buildings: Model, software and case studies," Applied Energy, Elsevier, vol. 139(C), pages 131-150.
    4. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    5. Xu, Wenjie & Svetozarevic, Bratislav & Di Natale, Loris & Heer, Philipp & Jones, Colin N., 2024. "Data-driven adaptive building thermal controller tuning with constraints: A primal–dual contextual Bayesian optimization approach," Applied Energy, Elsevier, vol. 358(C).
    6. Tsai, Wen-Hsien & Lin, Sin-Jin & Liu, Jau-Yang & Lin, Wan-Rung & Lee, Kuen-Chang, 2011. "Incorporating life cycle assessments into building project decision-making: An energy consumption and CO2 emission perspective," Energy, Elsevier, vol. 36(5), pages 3022-3029.
    7. Tsai, Wen-Hsien & Lee, Kuen-Chang & Liu, Jau-Yang & Lin, Hsiu-Ling & Chou, Yu-Wei & Lin, Sin-Jin, 2012. "A mixed activity-based costing decision model for green airline fleet planning under the constraints of the European Union Emissions Trading Scheme," Energy, Elsevier, vol. 39(1), pages 218-226.
    8. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    9. Badescu, Viorel & Laaser, Nadine & Crutescu, Ruxandra, 2010. "Warm season cooling requirements for passive buildings in Southeastern Europe (Romania)," Energy, Elsevier, vol. 35(8), pages 3284-3300.
    10. Premrov, Miroslav & Žigart, Maja & Žegarac Leskovar, Vesna, 2018. "Influence of the building shape on the energy performance of timber-glass buildings located in warm climatic regions," Energy, Elsevier, vol. 149(C), pages 496-504.
    11. Piechocki, Janusz & Ambroziak, Dominik & Palkowski, Aleksander & Redlarski, Grzegorz, 2014. "Use of Modified Cuckoo Search algorithm in the design process of integrated power systems for modern and energy self-sufficient farms," Applied Energy, Elsevier, vol. 114(C), pages 901-908.
    12. Manfren, Massimiliano & Aste, Niccolò & Moshksar, Reza, 2013. "Calibration and uncertainty analysis for computer models – A meta-model based approach for integrated building energy simulation," Applied Energy, Elsevier, vol. 103(C), pages 627-641.
    13. Koo, Choongwan & Hong, Taehoon & Kim, Jimin & Kim, Hyunjoong, 2015. "An integrated multi-objective optimization model for establishing the low-carbon scenario 2020 to achieve the national carbon emissions reduction target for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 410-425.
    14. Katerina Sojkova & Martin Volf & Antonin Lupisek & Roman Bolliger & Tomas Vachal, 2019. "Selection of Favourable Concept of Energy Retrofitting Solution for Social Housing in the Czech Republic Based on Economic Parameters, Greenhouse Gases, and Primary Energy Consumption," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    15. Zhu, L. & Hurt, R. & Correa, D. & Boehm, R., 2009. "Comprehensive energy and economic analyses on a zero energy house versus a conventional house," Energy, Elsevier, vol. 34(9), pages 1043-1053.
    16. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
    17. Kayakutlu, Gulgun & Daim, Tugrul & Kunt, Meltem & Altay, Ayca & Suharto, Yulianto, 2017. "Scenarios for regional waste management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1323-1335.
    18. Julia Reisinger & Patrick Hollinsky & Iva Kovacic, 2021. "Design Guideline for Flexible Industrial Buildings Integrating Industry 4.0 Parameters," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    19. Mohamed Ali Elleuch & Marwa Mallek & Ahmed Frikha & Wafik Hachicha & Awad M. Aljuaid & Murad Andejany, 2021. "Solving a Multiple User Energy Source Selection Problem Using a Fuzzy Multi-Criteria Group Decision-Making Approach," Energies, MDPI, vol. 14(14), pages 1-16, July.
    20. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:59:y:2013:i:c:p:534-542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.