Intelligent analysis of energy consumption in school buildings
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2015.12.072
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sonja van Renssen, 2012. "Legislating for energy efficiency," Nature Climate Change, Nature, vol. 2(8), pages 568-569, August.
- Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
- Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2015. "Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach," Applied Energy, Elsevier, vol. 144(C), pages 261-275.
- Pacheco, R. & Ordóñez, J. & Martínez, G., 2012. "Energy efficient design of building: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3559-3573.
- Hong, Tianzhen & Yang, Le & Hill, David & Feng, Wei, 2014. "Data and analytics to inform energy retrofit of high performance buildings," Applied Energy, Elsevier, vol. 126(C), pages 90-106.
- Toshi H. Arimura, Shanjun Li, Richard G. Newell, and Karen Palmer, 2012.
"Cost-Effectiveness of Electricity Energy Efficiency Programs,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
- Toshi H. Arimura & Shanjun Li & Richard G. Newell & Karen Palmer, 2012. "Cost-Effectiveness of Electricity Energy Efficiency Programs," The Energy Journal, , vol. 33(2), pages 63-100, April.
- Arimura, Toshi H. & Newell, Richard G. & Palmer, Karen, 2009. "Cost-Effectiveness of Electricity Energy Efficiency Programs," RFF Working Paper Series dp-09-48, Resources for the Future.
- Toshi H. Arimura & Shanjun Li & Richard G. Newell & Karen Palmer, 2011. "Cost-Effectiveness of Electricity Energy Efficiency Programs," NBER Working Papers 17556, National Bureau of Economic Research, Inc.
- Arimura, Toshi H. & Li, Shanjun & Newell, Richard G. & Palmer, Karen, 2011. "Cost-Effectiveness of Electricity Energy Efficiency Programs," RFF Working Paper Series dp-09-48-rev, Resources for the Future.
- Philip Farese, 2012. "How to build a low-energy future," Nature, Nature, vol. 488(7411), pages 275-277, August.
- Karmellos, M. & Kiprakis, A. & Mavrotas, G., 2015. "A multi-objective approach for optimal prioritization of energy efficiency measures in buildings: Model, software and case studies," Applied Energy, Elsevier, vol. 139(C), pages 131-150.
- Hong, Taehoon & Koo, Choongwan & Jeong, Kwangbok, 2012. "A decision support model for reducing electric energy consumption in elementary school facilities," Applied Energy, Elsevier, vol. 95(C), pages 253-266.
- Fiaschi, Daniele & Bandinelli, Romeo & Conti, Silvia, 2012. "A case study for energy issues of public buildings and utilities in a small municipality: Investigation of possible improvements and integration with renewables," Applied Energy, Elsevier, vol. 97(C), pages 101-114.
- Warren Torgerson, 1952. "Multidimensional scaling: I. Theory and method," Psychometrika, Springer;The Psychometric Society, vol. 17(4), pages 401-419, December.
- Georgiadou, Maria Christina & Hacking, Theophilus & Guthrie, Peter, 2012. "A conceptual framework for future-proofing the energy performance of buildings," Energy Policy, Elsevier, vol. 47(C), pages 145-155.
- Bartusch, Cajsa & Odlare, Monica & Wallin, Fredrik & Wester, Lars, 2012. "Exploring variance in residential electricity consumption: Household features and building properties," Applied Energy, Elsevier, vol. 92(C), pages 637-643.
- Li, Cheng & Hong, Tianzhen & Yan, Da, 2014. "An insight into actual energy use and its drivers in high-performance buildings," Applied Energy, Elsevier, vol. 131(C), pages 394-410.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bruno Mataloto & Daniel Calé & Kaiser Carimo & Joao C. Ferreira & Ricardo Resende, 2021. "3D IoT System for Environmental and Energy Consumption Monitoring System," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
- Fan, Cheng & Sun, Yongjun & Shan, Kui & Xiao, Fu & Wang, Jiayuan, 2018. "Discovering gradual patterns in building operations for improving building energy efficiency," Applied Energy, Elsevier, vol. 224(C), pages 116-123.
- Wang, Yang & Du, Jiangtao & Kuckelkorn, Jens M. & Kirschbaum, Alexander & Gu, Xin & Li, Daoliang, 2019. "Identifying the feasibility of establishing a passive house school in central Europe: An energy performance and carbon emissions monitoring study in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Li, Kehua & Yang, Rebecca Jing & Robinson, Duane & Ma, Jun & Ma, Zhenjun, 2019. "An agglomerative hierarchical clustering-based strategy using Shared Nearest Neighbours and multiple dissimilarity measures to identify typical daily electricity usage profiles of university library b," Energy, Elsevier, vol. 174(C), pages 735-748.
- Raza, Muhammad Qamar & Nadarajah, Mithulananthan & Ekanayake, Chandima, 2017. "Demand forecast of PV integrated bioclimatic buildings using ensemble framework," Applied Energy, Elsevier, vol. 208(C), pages 1626-1638.
- Ringel, Marc & Schlomann, Barbara & Krail, Michael & Rohde, Clemens, 2016. "Towards a green economy in Germany? The role of energy efficiency policies," Applied Energy, Elsevier, vol. 179(C), pages 1293-1303.
- Niemelä, Tuomo & Kosonen, Risto & Jokisalo, Juha, 2016. "Cost-optimal energy performance renovation measures of educational buildings in cold climate," Applied Energy, Elsevier, vol. 183(C), pages 1005-1020.
- Lucas Niehuns Antunes & Enedir Ghisi, 2020. "Water and energy consumption in schools: case studies in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4225-4249, June.
- Enongene, K.E. & Murray, P. & Holland, J. & Abanda, F.H., 2017. "Energy savings and economic benefits of transition towards efficient lighting in residential buildings in Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 731-742.
- Wadud, Zia & Royston, Sarah & Selby, Jan, 2019. "Modelling energy demand from higher education institutions: A case study of the UK," Applied Energy, Elsevier, vol. 233, pages 816-826.
- Michele Zinzi & Francesca Pagliaro & Stefano Agnoli & Fabio Bisegna & Domenico Iatauro, 2021. "On the Built-Environment Quality in Nearly Zero-Energy Renovated Schools: Assessment and Impact of Passive Strategies," Energies, MDPI, vol. 14(10), pages 1-18, May.
- Jitka Mohelníková & Miloslav Novotný & Pavla Mocová, 2020. "Evaluation of School Building Energy Performance and Classroom Indoor Environment," Energies, MDPI, vol. 13(10), pages 1-17, May.
- Cui, X. & Islam, M.R. & Chua, K.J., 2019. "Experimental study and energy saving potential analysis of a hybrid air treatment cooling system in tropical climates," Energy, Elsevier, vol. 172(C), pages 1016-1026.
- Carla Balocco & Alessandro Colaianni, 2018. "Assessment of Energy Sustainable Operations on a Historical Building. The Dante Alighieri High School in Florence," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
- Paola Marrone & Paola Gori & Francesco Asdrubali & Luca Evangelisti & Laura Calcagnini & Gianluca Grazieschi, 2018. "Energy Benchmarking in Educational Buildings through Cluster Analysis of Energy Retrofitting," Energies, MDPI, vol. 11(3), pages 1-20, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hong, Tianzhen & Piette, Mary Ann & Chen, Yixing & Lee, Sang Hoon & Taylor-Lange, Sarah C. & Zhang, Rongpeng & Sun, Kaiyu & Price, Phillip, 2015. "Commercial Building Energy Saver: An energy retrofit analysis toolkit," Applied Energy, Elsevier, vol. 159(C), pages 298-309.
- Cai, Wei & Wen, Xiaodong & Li, Chaoen & Shao, Jingjing & Xu, Jianguo, 2023. "Predicting the energy consumption in buildings using the optimized support vector regression model," Energy, Elsevier, vol. 273(C).
- Lee, Sang Hoon & Hong, Tianzhen & Piette, Mary Ann & Taylor-Lange, Sarah C., 2015. "Energy retrofit analysis toolkits for commercial buildings: A review," Energy, Elsevier, vol. 89(C), pages 1087-1100.
- Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
- Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
- Hamid R. Khosravani & María Del Mar Castilla & Manuel Berenguel & Antonio E. Ruano & Pedro M. Ferreira, 2016. "A Comparison of Energy Consumption Prediction Models Based on Neural Networks of a Bioclimatic Building," Energies, MDPI, vol. 9(1), pages 1-24, January.
- Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
- Perera, D.W.U. & Winkler, D. & Skeie, N.-O., 2016. "Multi-floor building heating models in MATLAB and Modelica environments," Applied Energy, Elsevier, vol. 171(C), pages 46-57.
- Rodríguez-Soria, Beatriz & Domínguez-Hernández, Javier & Pérez-Bella, José M. & del Coz-Díaz, Juan J., 2015. "Quantitative analysis of the divergence in energy losses allowed through building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1000-1008.
- Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
- Scarpa, Federico & Tagliafico, Luca A. & Bianco, Vincenzo, 2021. "Financial and energy performance analysis of efficiency measures in residential buildings. A probabilistic approach," Energy, Elsevier, vol. 236(C).
- Azar, Elie & Al Ansari, Hamad, 2017. "Framework to investigate energy conservation motivation and actions of building occupants: The case of a green campus in Abu Dhabi, UAE," Applied Energy, Elsevier, vol. 190(C), pages 563-573.
- Yen-Jong Chen & Rodney H Matsuoka & Tzu-Min Liang, 2018. "Urban form, building characteristics, and residential electricity consumption: A case study in Tainan City," Environment and Planning B, , vol. 45(5), pages 933-952, September.
- Paola Marrone & Paola Gori & Francesco Asdrubali & Luca Evangelisti & Laura Calcagnini & Gianluca Grazieschi, 2018. "Energy Benchmarking in Educational Buildings through Cluster Analysis of Energy Retrofitting," Energies, MDPI, vol. 11(3), pages 1-20, March.
- D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
- Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
- Chul-Ho Kim & Seung-Eon Lee & Kang-Soo Kim, 2018. "Analysis of Energy Saving Potential in High-Performance Building Technologies under Korean Climatic Conditions," Energies, MDPI, vol. 11(4), pages 1-34, April.
- Rafiee, A. & Dias, E. & Koomen, E., 2019. "Analysing the impact of spatial context on the heat consumption of individual households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 461-470.
- Rahman, Aowabin & Srikumar, Vivek & Smith, Amanda D., 2018. "Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 212(C), pages 372-385.
- Rahman, Aowabin & Smith, Amanda D., 2018. "Predicting heating demand and sizing a stratified thermal storage tank using deep learning algorithms," Applied Energy, Elsevier, vol. 228(C), pages 108-121.
More about this item
Keywords
Electricity; District heating; Smart metering; Energy efficiency; School buildings; Data analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:165:y:2016:i:c:p:416-429. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.