IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4180-d532796.html
   My bibliography  Save this article

Traffic Light Priority for Trams in Warsaw as a Tool for Transport Policy and Reduction of Energy Consumption

Author

Listed:
  • Andrzej Czerepicki

    (Faculty of Transport, Warsaw University of Technology, 00-662 Warsaw, Poland)

  • Tomasz Krukowicz

    (Faculty of Transport, Warsaw University of Technology, 00-662 Warsaw, Poland)

  • Anna Górka

    (Faculty of Transport, Warsaw University of Technology, 00-662 Warsaw, Poland
    Infrastructure Maintenance Office, Warsaw Trams Ltd., 01-232 Warsaw, Poland)

  • Jarosław Szustek

    (Infrastructure Maintenance Office, Warsaw Trams Ltd., 01-232 Warsaw, Poland)

Abstract

The article presents an analysis of priority solutions for trams at a selected sequence of intersections in Warsaw (Poland). An analysis of the literature has shown the topicality of this issue. A computer simulation model of a coordinated sequence of intersections was constructed. Three test scenarios were designed: the existing control system, the new coordinated fixed-time control system, and the adaptive control system with active priority. In the simulation process, detailed travel characteristics of trams and other traffic participants in a selected section were obtained for the three varying scenarios. Electric energy consumption for traction needs and pollutant emissions was then estimated for each of the variants. It was concluded that for the analyzed configuration, implementation of the adaptive priority will result in a reduction of tram time losses by up to 25%, a reduction in energy consumption by up to 23%, and a reduction in the emission of pollutants from individual vehicles by up to 3% in relation to the original variant. The conducted research may be the basis for a comprehensive method of assessing the effectiveness of applying the adaptative priority when designing new tramway lines and modernizing the existing ones.

Suggested Citation

  • Andrzej Czerepicki & Tomasz Krukowicz & Anna Górka & Jarosław Szustek, 2021. "Traffic Light Priority for Trams in Warsaw as a Tool for Transport Policy and Reduction of Energy Consumption," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4180-:d:532796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hiroaki Nishiuchi & Yasuyuki Kobayashi & Tomoyuki Todoroki & Tomoya Kawasaki, 2018. "Impact analysis of reductions in tram services in rural areas in Japan using smart card data," Public Transport, Springer, vol. 10(2), pages 291-309, August.
    2. Katrien De Langhe & Hilde Meersman & Christa Sys & Eddy Van de Voorde & Thierry Vanelslander, 2019. "How to make urban freight transport by tram successful?," Journal of Shipping and Trade, Springer, vol. 4(1), pages 1-23, December.
    3. Zhuang Xiao & Pengfei Sun & Qingyuan Wang & Yuqing Zhu & Xiaoyun Feng, 2018. "Integrated Optimization of Speed Profiles and Power Split for a Tram with Hybrid Energy Storage Systems on a Signalized Route," Energies, MDPI, vol. 11(3), pages 1-21, February.
    4. Pavkova, Katerina & Currie, Graham & Delbosc, Alexa & Sarvi, Majid, 2016. "Selecting tram links for priority treatments - The Lorenz Curve approach," Journal of Transport Geography, Elsevier, vol. 55(C), pages 101-109.
    5. Chen, Chia-Lin, 2018. "Tram development and urban transport integration in Chinese cities: A case study of Suzhou," Economics of Transportation, Elsevier, vol. 15(C), pages 16-31.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Krukowicz & Krzysztof Firląg & Józef Suda & Mirosław Czerliński, 2021. "Analysis of the Impact of Countdown Signal Timers on Driving Behavior and Road Safety," Energies, MDPI, vol. 14(21), pages 1-33, October.
    2. Krystian Pietrzak & Oliwia Pietrzak, 2022. "Tram System as a Challenge for Smart and Sustainable Urban Public Transport: Effects of Applying Bi-Directional Trams," Energies, MDPI, vol. 15(15), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    2. Fehn, Fabian & Engelhardt, Roman & Dandl, Florian & Bogenberger, Klaus & Busch, Fritz, 2023. "Integrating parcel deliveries into a ride-pooling service—An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    3. Jaewon Kim & Joorak Kim & Changmu Lee & Gildong Kim & Hansang Lee & Byongjun Lee, 2018. "Optimal Capacity Estimation Method of the Energy Storage Mounted on a Wireless Railway Train for Energy-Sustainable Transportation," Energies, MDPI, vol. 11(4), pages 1-19, April.
    4. Hörsting, Lena & Cleophas, Catherine, 2023. "Scheduling shared passenger and freight transport on a fixed infrastructure," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1158-1169.
    5. Apantri Peungnumsai & Hiroyuki Miyazaki & Apichon Witayangkurn & Sohee Minsun Kim, 2020. "A Grid-Based Spatial Analysis for Detecting Supply–Demand Gaps of Public Transports: A Case Study of the Bangkok Metropolitan Region," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    6. Mo Chen & Zhuang Xiao & Pengfei Sun & Qingyuan Wang & Bo Jin & Xiaoyun Feng, 2019. "Energy-Efficient Driving Strategies for Multi-Train by Optimization and Update Speed Profiles Considering Transmission Losses of Regenerative Energy," Energies, MDPI, vol. 12(18), pages 1-25, September.
    7. Yang, Xuan & Kong, Xiang T.R. & Huang, George Q., 2024. "Synchronizing crowdsourced co-modality between passenger and freight transportation services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    8. Hu, Wanjie & Dong, Jianjun & Hwang, Bon-Gang & Ren, Rui & Chen, Zhilong, 2022. "Is mass rapid transit applicable for deep integration of freight-passenger transport? A multi-perspective analysis from urban China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 490-510.
    9. Ying Yang & Weige Zhang & Shaoyuan Wei & Zhenpo Wang, 2020. "Optimal Sizing of On-Board Energy Storage Systems and Stationary Charging Infrastructures for a Catenary-Free Tram," Energies, MDPI, vol. 13(23), pages 1-21, November.
    10. Shiwakoti, Nirajan & Stasinopoulos, Peter & Vincec, Paul & Qian, Weidong & Hafsar, Renan, 2019. "Exploring how perceptive differences impact the current public transport usage and support for future public transport extension and usage: A case study of Melbourne's tramline extension," Transport Policy, Elsevier, vol. 84(C), pages 12-23.
    11. Dariusz Masłowski & Ewa Kulińska & Łukasz Krzewicki, 2023. "Alternative Methods of Replacing Electric Batteries in Public Transport Vehicles," Energies, MDPI, vol. 16(15), pages 1-22, August.
    12. Thitithep Sitthiyot & Kanyarat Holasut, 2020. "A simple method for measuring inequality," Palgrave Communications, Palgrave Macmillan, vol. 6(1), pages 1-9, December.
    13. Ying Wang & Ya Guo & Xiaoqiang Chen & Yunpeng Zhang & Dong Jin & Jing Xie, 2023. "Research on the Energy Management Strategy of a Hybrid Energy Storage Type Railway Power Conditioner System," Energies, MDPI, vol. 16(15), pages 1-16, August.
    14. Prasanta K. Sahu & Babak Mehran & Surya P. Mahapatra & Satish Sharma, 2021. "Spatial data analysis approach for network-wide consolidation of bus stop locations," Public Transport, Springer, vol. 13(2), pages 375-394, June.
    15. Mohammad Vajihi & Stefano Ricci, 2021. "Energy Efficiency Assessment of Rail Freight Transport: Freight Tram in Berlin," Energies, MDPI, vol. 14(13), pages 1-24, July.
    16. Lena Hörsting & Catherine Cleophas, 2023. "Integrating Micro-Depot Freight Transport in Existing Public Transport Services," SN Operations Research Forum, Springer, vol. 4(3), pages 1-35, September.
    17. Caterina Malandri & Luca Mantecchini & Filippo Paganelli & Maria Nadia Postorino, 2021. "Public Transport Network Vulnerability and Delay Distribution among Travelers," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    18. Krystian Pietrzak & Oliwia Pietrzak & Andrzej Montwiłł, 2021. "Effects of Incorporating Rail Transport into a Zero-Emission Urban Deliveries System: Application of Light Freight Railway (LFR) Electric Trains," Energies, MDPI, vol. 14(20), pages 1-24, October.
    19. Ivan Radaš & Ivan Župan & Viktor Šunde & Željko Ban, 2021. "Route Profile Dependent Tram Regenerative Braking Algorithm with Reduced Impact on the Supply Network," Energies, MDPI, vol. 14(9), pages 1-22, April.
    20. Filip Covic & Stefan Voß, 2019. "Interoperable smart card data management in public mass transit," Public Transport, Springer, vol. 11(3), pages 523-548, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4180-:d:532796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.