IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3982-d587709.html
   My bibliography  Save this article

Energy Efficiency Assessment of Rail Freight Transport: Freight Tram in Berlin

Author

Listed:
  • Mohammad Vajihi

    (Department of Civil, Construction and Environmental Engineering (DICEA), Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy)

  • Stefano Ricci

    (Department of Civil, Construction and Environmental Engineering (DICEA), Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy)

Abstract

Freight tram systems can potentially reduce commercial road vehicle use and, consequently, reduce congestion, accidents, air pollution, noise levels, and road maintenance costs. This paper explores the new application for the urban rail system as a sustainable solution for urban freight distribution. A significant problem in using rail for urban freight is determining the most efficient tram route, in terms of related costs and accessibility for the distribution centers and end-users. The study takes a systematic approach, based on identifying scenarios, existing tramlines, traveled distances, and time durations, and appraises the scheme through an energy consumption analysis to assess a hypothetical freight tram scheme. In a German case study in Berlin, a freight tram system delivered the goods of five delivery companies from their logistics hubs in the Pankow district to a micro depot instead of to the trucks. Three different path scenarios from logistics hubs to the micro depot were developed, to make comparisons based on energy consumption. Freight tram implementation in Berlin (compared to the current situation) resulted in a reduction of more than 7 tons of CO 2 emissions per year, and 60 road-vehicle-kilometers per day, in exchange for 275 MJ of daily electric consumption.

Suggested Citation

  • Mohammad Vajihi & Stefano Ricci, 2021. "Energy Efficiency Assessment of Rail Freight Transport: Freight Tram in Berlin," Energies, MDPI, vol. 14(13), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3982-:d:587709
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3982/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3982/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katrien De Langhe & Hilde Meersman & Christa Sys & Eddy Van de Voorde & Thierry Vanelslander, 2019. "How to make urban freight transport by tram successful?," Journal of Shipping and Trade, Springer, vol. 4(1), pages 1-23, December.
    2. Niklas Arvidsson & Michael Browne, 2013. "A review of the success and failure of tram systems to carry urban freight: the implications for a low emission intermodal solution using electric vehicles on trams," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 54, pages 1-5.
    3. Zhangyuan He & Hans-Dietrich Haasis, 2019. "Integration of Urban Freight Innovations: Sustainable Inner-Urban Intermodal Transportation in the Retail/Postal Industry," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siqi Li & Hengjiao Duan & Jinglin Xia & Lu Xiong, 2022. "Analysis and Case Study of National Economic Evaluation of Expressway Dynamic Wireless Charging," Energies, MDPI, vol. 15(19), pages 1-28, September.
    2. Yang, Xuan & Kong, Xiang T.R. & Huang, George Q., 2024. "Synchronizing crowdsourced co-modality between passenger and freight transportation services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hörsting, Lena & Cleophas, Catherine, 2023. "Scheduling shared passenger and freight transport on a fixed infrastructure," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1158-1169.
    2. Hu, Wanjie & Dong, Jianjun & Hwang, Bon-Gang & Ren, Rui & Chen, Zhilong, 2022. "Is mass rapid transit applicable for deep integration of freight-passenger transport? A multi-perspective analysis from urban China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 490-510.
    3. Lena Hörsting & Catherine Cleophas, 2023. "Integrating Micro-Depot Freight Transport in Existing Public Transport Services," SN Operations Research Forum, Springer, vol. 4(3), pages 1-35, September.
    4. Krystian Pietrzak & Oliwia Pietrzak & Andrzej Montwiłł, 2021. "Effects of Incorporating Rail Transport into a Zero-Emission Urban Deliveries System: Application of Light Freight Railway (LFR) Electric Trains," Energies, MDPI, vol. 14(20), pages 1-24, October.
    5. Zhu, Shengda & Bell, Michael G.H. & Schulz, Veronica & Stokoe, Michael, 2023. "Co-modality in city logistics: Sounds good, but how?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    6. Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    7. He, Dongdong & Guan, Wei, 2023. "Promoting service quality with incentive contracts in rural bus integrated passenger-freight service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    8. Park, Hyeongjun & Park, Dongjoo & Jeong, In-Jae, 2016. "An effects analysis of logistics collaboration in last-mile networks for CEP delivery services," Transport Policy, Elsevier, vol. 50(C), pages 115-125.
    9. Fehn, Fabian & Engelhardt, Roman & Dandl, Florian & Bogenberger, Klaus & Busch, Fritz, 2023. "Integrating parcel deliveries into a ride-pooling service—An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    10. Agnieszka Merkisz-Guranowska & Natalya Shramenko & Marcin Kiciński & Vladyslav Shramenko, 2023. "Simulation Model for Operational Planning of City Cargo Transportation by Trams in Conditions of Stochastic Demand," Energies, MDPI, vol. 16(10), pages 1-20, May.
    11. Nocera, Silvio & Pungillo, Giuseppe & Bruzzone, Francesco, 2021. "How to evaluate and plan the freight-passengers first-last mile," Transport Policy, Elsevier, vol. 113(C), pages 56-66.
    12. Magdalena Mucowska, 2021. "Trends of Environmentally Sustainable Solutions of Urban Last-Mile Deliveries on the E-Commerce Market—A Literature Review," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
    13. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Wang, Li & Li, Tianqi, 2024. "Scheduling shared passenger and freight transport for an underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    14. Ji, Yuxiong & Zhou, Minhang & Zheng, Yujing & Shen, Yu & Du, Yuchuan, 2024. "Urban passenger-and-package sharing transportation by e-hailing taxis: A simulation-based pricing analysis in shanghai," Transport Policy, Elsevier, vol. 156(C), pages 138-151.
    15. Snežana Tadić & Mladen Krstić & Milovan Kovač, 2023. "Assessment of city logistics initiative categories sustainability: case of Belgrade," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1383-1419, February.
    16. Milovan Kovač & Snežana Tadić & Mladen Krstić & Miloš Veljović, 2023. "A Methodology for Planning City Logistics Concepts Based on City-Dry Port Micro-Consolidation Centres," Mathematics, MDPI, vol. 11(15), pages 1-21, July.
    17. Giulio Mangano & Giovanni Zenezini & Anna Corinna Cagliano & Alberto De Marco, 2019. "The dynamics of diffusion of an electronic platform supporting City Logistics services," Operations Management Research, Springer, vol. 12(3), pages 182-198, December.
    18. Yang, Xuan & Kong, Xiang T.R. & Huang, George Q., 2024. "Synchronizing crowdsourced co-modality between passenger and freight transportation services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    19. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    20. Jesus Gonzalez-Feliu, 2014. "Costs and benefits of railway urban logistics: a prospective social cost benefit analysis," Working Papers halshs-01056135, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3982-:d:587709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.