IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p16-d299564.html
   My bibliography  Save this article

ANN-Based Stop Criteria for a Genetic Algorithm Applied to Air Impingement Design

Author

Listed:
  • Ander Sánchez-Chica

    (System Engineering & Automation Control Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01016 Vitoria-Gasteiz, Spain)

  • Ekaitz Zulueta

    (System Engineering & Automation Control Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01016 Vitoria-Gasteiz, Spain)

  • Daniel Teso-Fz-Betoño

    (System Engineering & Automation Control Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01016 Vitoria-Gasteiz, Spain)

  • Pablo Martínez-Filgueira

    (CS Centro Stirling S. Coop., Avenida Álava 3, 20550 Aretxabaleta, Spain)

  • Unai Fernandez-Gamiz

    (Nuclear Engineering & Fluid Mechanics Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01016 Vitoria-Gasteiz, Spain)

Abstract

Artificial Neural Networks (ANNs) have proven to be a powerful tool in many fields of knowledge. At the same time, evolutionary algorithms show a very efficient technique in optimization tasks. Historically, ANNs are used in the training process of supervising networks by decreasing the error between the output and the target. However, we propose another approach in order to improve these two techniques together. The ANN is trained with the points obtained during an optimization process by a genetic algorithm and a flower pollination algorithm. The performance of this ANN is used as a stop criterion for the optimization process. This new configuration aims to reduce the number of iterations executed by the genetic optimizer when learning the cost function by an ANN. As a first step, this approach is tested with eight benchmark functions. As a second step, the authors apply it to an air jet impingement design process, optimizing the surface temperature and the fan efficiency. Finally, a comparison between the results of a regular optimization and the results obtained in the present study is presented.

Suggested Citation

  • Ander Sánchez-Chica & Ekaitz Zulueta & Daniel Teso-Fz-Betoño & Pablo Martínez-Filgueira & Unai Fernandez-Gamiz, 2019. "ANN-Based Stop Criteria for a Genetic Algorithm Applied to Air Impingement Design," Energies, MDPI, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:16-:d:299564
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joanna Ferdyn-Grygierek & Krzysztof Grygierek, 2017. "Multi-Variable Optimization of Building Thermal Design Using Genetic Algorithms," Energies, MDPI, vol. 10(10), pages 1-20, October.
    2. Wieczorek, Maciej & Lewandowski, Mirosław, 2017. "A mathematical representation of an energy management strategy for hybrid energy storage system in electric vehicle and real time optimization using a genetic algorithm," Applied Energy, Elsevier, vol. 192(C), pages 222-233.
    3. Pablo Martínez-Filgueira & Ekaitz Zulueta & Ander Sánchez-Chica & Unai Fernández-Gámiz & Josu Soriano, 2019. "Multi-Objective Particle Swarm Based Optimization of an Air Jet Impingement System," Energies, MDPI, vol. 12(9), pages 1-16, April.
    4. Aitor Saenz-Aguirre & Ekaitz Zulueta & Unai Fernandez-Gamiz & Javier Lozano & Jose Manuel Lopez-Guede, 2019. "Artificial Neural Network Based Reinforcement Learning for Wind Turbine Yaw Control," Energies, MDPI, vol. 12(3), pages 1-17, January.
    5. Ehsan Gholamalizadeh & Man-Hoe Kim, 2016. "Multi-Objective Optimization of a Solar Chimney Power Plant with Inclined Collector Roof Using Genetic Algorithm," Energies, MDPI, vol. 9(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    2. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    3. Guoqiang Xu & Hong Jin & Jian Kang, 2019. "Experimental Study on the Indoor Thermo-Hygrometric Conditionsof the Mongolian Yurt," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    4. Xiong, Rui & Duan, Yanzhou & Cao, Jiayi & Yu, Quanqing, 2018. "Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle," Applied Energy, Elsevier, vol. 217(C), pages 153-165.
    5. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    7. Chen, Zheng & Hu, Hengjie & Wu, Yitao & Zhang, Yuanjian & Li, Guang & Liu, Yonggang, 2020. "Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 211(C).
    8. Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    9. Zhang, Bo & Zhang, Jiangyan & Shen, Tielong, 2022. "Optimal control design for comfortable-driving of hybrid electric vehicles in acceleration mode," Applied Energy, Elsevier, vol. 305(C).
    10. Horn, Michael & MacLeod, Jennifer & Liu, Meinan & Webb, Jeremy & Motta, Nunzio, 2019. "Supercapacitors: A new source of power for electric cars?," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 93-103.
    11. Goopyo Hong & Byungseon Sean Kim, 2018. "Development of a Data-Driven Predictive Model of Supply Air Temperature in an Air-Handling Unit for Conserving Energy," Energies, MDPI, vol. 11(2), pages 1-16, February.
    12. Li, Jianwei & Xiong, Rui & Mu, Hao & Cornélusse, Bertrand & Vanderbemden, Philippe & Ernst, Damien & Yuan, Weijia, 2018. "Design and real-time test of a hybrid energy storage system in the microgrid with the benefit of improving the battery lifetime," Applied Energy, Elsevier, vol. 218(C), pages 470-478.
    13. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    14. Petru Valentin Radu & Miroslaw Lewandowski & Adam Szelag, 2020. "On-Board and Wayside Energy Storage Devices Applications in Urban Transport Systems—Case Study Analysis for Power Applications," Energies, MDPI, vol. 13(8), pages 1-29, April.
    15. Krzysztof Grygierek & Joanna Ferdyn-Grygierek, 2022. "Design of Ventilation Systems in a Single-Family House in Terms of Heating Demand and Indoor Environment Quality," Energies, MDPI, vol. 15(22), pages 1-18, November.
    16. Tusongjiang Kari & Wensheng Gao & Ayiguzhali Tuluhong & Yilihamu Yaermaimaiti & Ziwei Zhang, 2018. "Mixed Kernel Function Support Vector Regression with Genetic Algorithm for Forecasting Dissolved Gas Content in Power Transformers," Energies, MDPI, vol. 11(9), pages 1-19, September.
    17. Daeil Lee & Seoryong Koo & Inseok Jang & Jonghyun Kim, 2022. "Comparison of Deep Reinforcement Learning and PID Controllers for Automatic Cold Shutdown Operation," Energies, MDPI, vol. 15(8), pages 1-25, April.
    18. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    19. Seyedeh Farzaneh Mousavi Motlagh & Ali Sohani & Mohammad Djavad Saghafi & Hoseyn Sayyaadi & Benedetto Nastasi, 2021. "The Road to Developing Economically Feasible Plans for Green, Comfortable and Energy Efficient Buildings," Energies, MDPI, vol. 14(3), pages 1-30, January.
    20. Ghoroghi, Ali & Petri, Ioan & Rezgui, Yacine & Alzahrani, Ateyah, 2023. "A deep learning approach to predict and optimise energy in fish processing industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:16-:d:299564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.