IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v192y2022icp50-69.html
   My bibliography  Save this article

Identification of the dynamics of the drivetrain and estimating its unknown parts in a large scale wind turbine

Author

Listed:
  • Golnary, Farshad
  • Moradi, Hamed

Abstract

In this paper, the drivetrain identification problem of a horizontal axis gear-driven wind turbine has been considered. The identification problem leads to a precise model of the drivetrain of the wind turbines which plays a key role in the production and transmission of electrical energy. This process consists of two stages: First, offline identification which needs the input–output data from the drivetrain system. These data are obtained from the FAST code. FAST (Fatigue, Aerodynamics, Structures, and Turbulence) is a valid aeroelastic code in the simulation aeroelastic field of offshore and onshore wind turbines. In region 2 (wind velocity is between the cut-in and rated velocities), the generator torque is input, and rotor speed is output. It is supposed that the wind velocity is neglected in the identification process (the identification process is not considered in the presence of wind or done in the low wind velocities bellower than the cut-in wind velocity). In the second stage, after completion of the offline identification process, the drivetrain model of the wind turbine is obtained but the aerodynamic torque in the real performance of the wind turbine is still unknown. In this stage, to estimate the aerodynamic torque, high order sliding mode estimator is used and the unknown states are estimated by using the Extended Kalman Filter (EKF)

Suggested Citation

  • Golnary, Farshad & Moradi, Hamed, 2022. "Identification of the dynamics of the drivetrain and estimating its unknown parts in a large scale wind turbine," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 50-69.
  • Handle: RePEc:eee:matcom:v:192:y:2022:i:c:p:50-69
    DOI: 10.1016/j.matcom.2021.08.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421002895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.08.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter J. Schubel & Richard J. Crossley, 2012. "Wind Turbine Blade Design," Energies, MDPI, vol. 5(9), pages 1-25, September.
    2. Barambones, Oscar & Cortajarena, Jose A. & Calvo, Isidro & Gonzalez de Durana, Jose M. & Alkorta, Patxi & Karami-Mollaee, A., 2019. "Variable speed wind turbine control scheme using a robust wind torque estimation," Renewable Energy, Elsevier, vol. 133(C), pages 354-366.
    3. Sahu, Bikash Kumar, 2018. "Wind energy developments and policies in China: A short review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1393-1405.
    4. Wu, Xiaoni & Hu, Yu & Li, Ye & Yang, Jian & Duan, Lei & Wang, Tongguang & Adcock, Thomas & Jiang, Zhiyu & Gao, Zhen & Lin, Zhiliang & Borthwick, Alistair & Liao, Shijun, 2019. "Foundations of offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 379-393.
    5. Moodi, Hoda & Bustan, Danyal, 2019. "Wind turbine control using T-S systems with nonlinear consequent parts," Energy, Elsevier, vol. 172(C), pages 922-931.
    6. Abdullah, M.A. & Yatim, A.H.M. & Tan, C.W. & Saidur, R., 2012. "A review of maximum power point tracking algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3220-3227.
    7. Tabassum-Abbasi, & Premalatha, M. & Abbasi, Tasneem & Abbasi, S.A., 2014. "Wind energy: Increasing deployment, rising environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 270-288.
    8. Zappalá, D. & Sarma, N. & Djurović, S. & Crabtree, C.J. & Mohammad, A. & Tavner, P.J., 2019. "Electrical & mechanical diagnostic indicators of wind turbine induction generator rotor faults," Renewable Energy, Elsevier, vol. 131(C), pages 14-24.
    9. Boukhezzar, B. & Lupu, L. & Siguerdidjane, H. & Hand, M., 2007. "Multivariable control strategy for variable speed, variable pitch wind turbines," Renewable Energy, Elsevier, vol. 32(8), pages 1273-1287.
    10. Yang, Bo & Yu, Tao & Shu, Hongchun & Dong, Jun & Jiang, Lin, 2018. "Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers," Applied Energy, Elsevier, vol. 210(C), pages 711-723.
    11. Kot, R. & Rolak, M. & Malinowski, M., 2013. "Comparison of maximum peak power tracking algorithms for a small wind turbine," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 91(C), pages 29-40.
    12. Golnary, Farshad & Moradi, Hamed, 2018. "Design and comparison of quasi continuous sliding mode control with feedback linearization for a large scale wind turbine with wind speed estimation," Renewable Energy, Elsevier, vol. 127(C), pages 495-508.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Minghui & Yang, Zhiqiang & Xu, Yan & Liu, Jiankun & Zhou, Lianjun & Zou, Yun, 2018. "Aerodynamic optimization for variable-speed wind turbines based on wind energy capture efficiency," Applied Energy, Elsevier, vol. 221(C), pages 508-521.
    2. Njiri, Jackson G. & Söffker, Dirk, 2016. "State-of-the-art in wind turbine control: Trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 377-393.
    3. Mérida, Jován & Aguilar, Luis T. & Dávila, Jorge, 2014. "Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization," Renewable Energy, Elsevier, vol. 71(C), pages 715-728.
    4. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    5. Ganjefar, Soheil & Ghassemi, Ali Akbar & Ahmadi, Mohamad Mehdi, 2014. "Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network," Energy, Elsevier, vol. 67(C), pages 444-453.
    6. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    7. Ganjefar, Soheil & Ghasemi, Ali Akbar, 2014. "A novel-strategy controller design for maximum power extraction in stand-alone windmill systems," Energy, Elsevier, vol. 76(C), pages 326-335.
    8. Hongfu Zhang & Jiahao Wen & Farshad Golnary & Lei Zhou, 2022. "Output Power Control and Load Mitigation of a Horizontal Axis Wind Turbine with a Fully Coupled Aeroelastic Model: Novel Sliding Mode Perspective," Mathematics, MDPI, vol. 10(15), pages 1-40, August.
    9. Golnary, Farshad & Tse, K.T., 2021. "Novel sensorless fault-tolerant pitch control of a horizontal axis wind turbine with a new hybrid approach for effective wind velocity estimation," Renewable Energy, Elsevier, vol. 179(C), pages 1291-1315.
    10. Chen, Jian & Yao, Wei & Zhang, Chuan-Ke & Ren, Yaxing & Jiang, Lin, 2019. "Design of robust MPPT controller for grid-connected PMSG-Based wind turbine via perturbation observation based nonlinear adaptive control," Renewable Energy, Elsevier, vol. 134(C), pages 478-495.
    11. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    12. Zhiqiang Yang & Minghui Yin & Yan Xu & Zhengyang Zhang & Yun Zou & Zhao Yang Dong, 2016. "A Multi-Point Method Considering the Maximum Power Point Tracking Dynamic Process for Aerodynamic Optimization of Variable-Speed Wind Turbine Blades," Energies, MDPI, vol. 9(6), pages 1-16, May.
    13. Alizadeh, Mojtaba & Kojori, Shokrollah Shokri, 2015. "Augmenting effectiveness of control loops of a PMSG (permanent magnet synchronous generator) based wind energy conversion system by a virtually adaptive PI (proportional integral) controller," Energy, Elsevier, vol. 91(C), pages 610-629.
    14. Chan Roh, 2022. "Deep-Learning-Based Pitch Controller for Floating Offshore Wind Turbine Systems with Compensation for Delay of Hydraulic Actuators," Energies, MDPI, vol. 15(9), pages 1-18, April.
    15. Zhiqiang Yang & Minghui Yin & Yan Xu & Yun Zou & Zhao Yang Dong & Qian Zhou, 2016. "Inverse Aerodynamic Optimization Considering Impacts of Design Tip Speed Ratio for Variable-Speed Wind Turbines," Energies, MDPI, vol. 9(12), pages 1-15, December.
    16. Zahra Sefidgar & Amir Ahmadi Joneidi & Ahmad Arabkoohsar, 2023. "A Comprehensive Review on Development and Applications of Cross-Flow Wind Turbines," Sustainability, MDPI, vol. 15(5), pages 1-39, March.
    17. Cheng, Youliang & Xue, Zhanpu & Jiang, Tuo & Wang, Wenyang & Wang, Yuekun, 2018. "Numerical simulation on dynamic response of flexible multi-body tower blade coupling in large wind turbine," Energy, Elsevier, vol. 152(C), pages 601-612.
    18. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Ademi, Sul & Jovanovic, Milutin, 2016. "Control of doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 85(C), pages 171-180.
    20. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:192:y:2022:i:c:p:50-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.