IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v135y2021ics1364032120306201.html
   My bibliography  Save this article

Co-creation of local eco-rehabilitation strategies for energy improvement of historic urban areas

Author

Listed:
  • Egusquiza, A.
  • Ginestet, S.
  • Espada, J.C.
  • Flores-Abascal, I.
  • Garcia-Gafaro, C.
  • Giraldo-Soto, C.
  • Claude, S.
  • Escadeillas, G.

Abstract

Energy performance and thermal comfort in historic and traditional urban environments are important because of the social and cultural requirement to conserve these areas as living entities, but also for the environmental obligation to decrease the impact of existing buildings globally. The objective of ENERPAT approach is to address this global challenge from the local perspective, through the co-creation of efficient solutions that improve the energy performance of historic areas considering local techniques and skills, taking into account the whole life cycle of the solutions, and supporting local economy and business. The objective is to test the efficiency and suitability of eco-renovation strategies that have been co-created with local stakeholders and are based on traditional energy conservation measures, as a way to work with locally-based business models that can safeguard cultural aspects and enable economic development. Two living labs have been established in the cities of Vitoria-Gasteiz (Spain) and Cahors (France) in two representative buildings of the historic urban area of each city. The living labs operate as inclusive multi-agent discussion arenas with a long-term vision, where multi-criteria co-creation processes are implemented to select conservation-friendly solutions based on local materials including criteria such as operational energy, impact on heritage values, quality of life, socio-economic development and easy logistics. The energy behaviour of the buildings and the hygrothermal performance of the external walls have been studied using on-site and laboratory experiments, through an efficient partnership between local authorities and universities. Likewise, local-based refurbishment solutions that were designed in the co-creation processes have been thermally characterised in the laboratory, through thermal conductivity and guarded hot box tests. Finally, the energy improvement of the whole renovation strategy has been simulated showing the enhancement of the two buildings.

Suggested Citation

  • Egusquiza, A. & Ginestet, S. & Espada, J.C. & Flores-Abascal, I. & Garcia-Gafaro, C. & Giraldo-Soto, C. & Claude, S. & Escadeillas, G., 2021. "Co-creation of local eco-rehabilitation strategies for energy improvement of historic urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120306201
    DOI: 10.1016/j.rser.2020.110332
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120306201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levin, Simon & Xepapadeas, Tasos & Crépin, Anne-Sophie & Norberg, Jon & de Zeeuw, Aart & Folke, Carl & Hughes, Terry & Arrow, Kenneth & Barrett, Scott & Daily, Gretchen & Ehrlich, Paul & Kautsky, Nils, 2013. "Social-ecological systems as complex adaptive systems: modeling and policy implications," Environment and Development Economics, Cambridge University Press, vol. 18(2), pages 111-132, April.
    2. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Butler, C. & Demski, C. & Parkhill, K. & Pidgeon, N. & Spence, A., 2015. "Public values for energy futures: Framing, indeterminacy and policy making," Energy Policy, Elsevier, vol. 87(C), pages 665-672.
    4. Fabrizio Barca & Philip McCann & Andrés Rodríguez‐Pose, 2012. "The Case For Regional Development Intervention: Place‐Based Versus Place‐Neutral Approaches," Journal of Regional Science, Wiley Blackwell, vol. 52(1), pages 134-152, February.
    5. Jessica De Boer & Christian Zuidema & Katharina Gugerell, 2018. "New interaction paths in the energy landscape: the role of local energy initiatives," Landscape Research, Taylor & Francis Journals, vol. 43(4), pages 489-502, May.
    6. James Evans & Andrew Karvonen, 2014. "‘Give Me a Laboratory and I Will Lower Your Carbon Footprint!’ — Urban Laboratories and the Governance of Low-Carbon Futures," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 38(2), pages 413-430, March.
    7. David Colander & Roland Kupers, 2014. "Complexity and the Art of Public Policy: Solving Society’s Problems from the Bottom Up," Economics Books, Princeton University Press, edition 1, number 10207.
    8. Martínez-Molina, Antonio & Tort-Ausina, Isabel & Cho, Soolyeon & Vivancos, José-Luis, 2016. "Energy efficiency and thermal comfort in historic buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 70-85.
    9. Liu, LiFang & Li, HongQiang & Lazzaretto, Andrea & Manente, Giovanni & Tong, ChunYi & Liu, QiBin & Li, NianPing, 2017. "The development history and prospects of biomass-based insulation materials for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 912-932.
    10. Winskel, Mark & Markusson, Nils & Jeffrey, Henry & Candelise, Chiara & Dutton, Geoff & Howarth, Paul & Jablonski, Sophie & Kalyvas, Christos & Ward, David, 2014. "Learning pathways for energy supply technologies: Bridging between innovation studies and learning rates," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 96-114.
    11. Webb, Amanda L., 2017. "Energy retrofits in historic and traditional buildings: A review of problems and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 748-759.
    12. Munarim, Ulisses & Ghisi, Enedir, 2016. "Environmental feasibility of heritage buildings rehabilitation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 235-249.
    13. Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D., 2020. "Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    14. Thibodeau, Charles & Bataille, Alain & Sié, Marion, 2019. "Building rehabilitation life cycle assessment methodology–state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 408-422.
    15. Aidan Rhodes & Jim Skea & Matthew Hannon, 2014. "The Global Surge in Energy Innovation," Energies, MDPI, vol. 7(9), pages 1-23, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dall-Orsoletta, Alaize & Romero, Fernando & Ferreira, Paula, 2022. "Open and collaborative innovation for the energy transition: An exploratory study," Technology in Society, Elsevier, vol. 69(C).
    2. Seyed Mohammad Haghighi Fard & Naciye Doratli, 2022. "Evaluation of Resilience in Historic Urban Areas by Combining Multi-Criteria Decision-Making System and GIS, with Sustainability and Regeneration Approach: The Case Study of Tehran (IRAN)," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    3. Valentina Marincioni & Virginia Gori & Ernst Jan de Place Hansen & Daniel Herrera-Avellanosa & Sara Mauri & Emanuela Giancola & Aitziber Egusquiza & Alessia Buda & Eleonora Leonardi & Alexander Rieser, 2021. "How Can Scientific Literature Support Decision-Making in the Renovation of Historic Buildings? An Evidence-Based Approach for Improving the Performance of Walls," Sustainability, MDPI, vol. 13(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robertson Munro, Fiona & Cairney, Paul, 2020. "A systematic review of energy systems: The role of policymaking in sustainable transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    3. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    4. Valentina Marincioni & Virginia Gori & Ernst Jan de Place Hansen & Daniel Herrera-Avellanosa & Sara Mauri & Emanuela Giancola & Aitziber Egusquiza & Alessia Buda & Eleonora Leonardi & Alexander Rieser, 2021. "How Can Scientific Literature Support Decision-Making in the Renovation of Historic Buildings? An Evidence-Based Approach for Improving the Performance of Walls," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    5. Webb, Amanda L., 2017. "Energy retrofits in historic and traditional buildings: A review of problems and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 748-759.
    6. Pochwała, Sławomir & Anweiler, Stanisław & Tańczuk, Mariusz & Klementowski, Igor & Przysiężniuk, Dawid & Adrian, Łukasz & McNamara, Greg & Stevanović, Žana, 2023. "Energy source impact on the economic and environmental effects of retrofitting a heritage building with a heat pump system," Energy, Elsevier, vol. 278(PB).
    7. Belén Onecha & Alicia Dotor & Carlos Marmolejo-Duarte, 2021. "Beyond Cultural and Historic Values, Sustainability as a New Kind of Value for Historic Buildings," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    8. Laura Balaguer & Fernando Vegas López-Manzanares & Camilla Mileto & Lidia García-Soriano, 2019. "Assessment of the Thermal Behaviour of Rammed Earth Walls in the Summer Period," Sustainability, MDPI, vol. 11(7), pages 1-12, April.
    9. Mirco Andreotti & Dario Bottino-Leone & Marta Calzolari & Pietromaria Davoli & Luisa Dias Pereira & Elena Lucchi & Alexandra Troi, 2020. "Applied Research of the Hygrothermal Behaviour of an Internally Insulated Historic Wall without Vapour Barrier: In Situ Measurements and Dynamic Simulations," Energies, MDPI, vol. 13(13), pages 1-22, July.
    10. Blázquez, Teresa & Ferrari, Simone & Suárez, Rafael & Sendra, Juan José, 2019. "Adaptive approach-based assessment of a heritage residential complex in southern Spain for improving comfort and energy efficiency through passive strategies: A study based on a monitored flat," Energy, Elsevier, vol. 181(C), pages 504-520.
    11. Mariangela De Vita & Giulia Massari & Pierluigi De Berardinis, 2020. "Retrofit Methodology Based on Energy Simulation Modeling Applied for the Enhancement of a Historical Building in L’Aquila," Energies, MDPI, vol. 13(12), pages 1-26, June.
    12. Lingjun Hao & Daniel Herrera-Avellanosa & Claudio Del Pero & Alexandra Troi, 2020. "What Are the Implications of Climate Change for Retrofitted Historic Buildings? A Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    13. Nenad Šekularac & Jelena Ivanović-Šekularac & Aleksandar Petrovski & Nikola Macut & Milan Radojević, 2020. "Restoration of a Historic Building in Order to Improve Energy Efficiency and Energy Saving—Case Study—The Dining Room within the Žiča Monastery Property," Sustainability, MDPI, vol. 12(15), pages 1-21, August.
    14. Pierfrancesco Fiore & Enrico Sicignano & Giuseppe Donnarumma, 2020. "An AHP-Based Methodology for the Evaluation and Choice of Integrated Interventions on Historic Buildings," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    15. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    16. Elnaz Farjami & Özlem Olgaç Türker, 2021. "The Extraction of Prerequisite Criteria for Environmentally Certified Adaptive Reuse of Heritage Buildings," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    17. Cho, Hyun Mi & Yun, Beom Yeol & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Optimal energy retrofit plan for conservation and sustainable use of historic campus building: Case of cultural property building," Applied Energy, Elsevier, vol. 275(C).
    18. Cho, Hyun Mi & Yun, Beom Yeol & Kim, Young Uk & Yuk, Hyeonseong & Kim, Sumin, 2022. "Integrated retrofit solutions for improving the energy performance of historic buildings through energy technology suitability analyses: Retrofit plan of wooden truss and masonry composite structure i," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Felder, F.A. & Kumar, P., 2021. "A review of existing deep decarbonization models and their potential in policymaking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Muñoz González, C.Mª & León Rodríguez, A.L. & Suárez Medina, R. & Ruiz Jaramillo, J., 2020. "Effects of future climate change on the preservation of artworks, thermal comfort and energy consumption in historic buildings," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120306201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.