IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13875-d703244.html
   My bibliography  Save this article

A Conceptual Framework for Estimating Building Embodied Carbon Based on Digital Twin Technology and Life Cycle Assessment

Author

Listed:
  • Chen Chen

    (Department of Structural Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China)

  • Zengfeng Zhao

    (Department of Structural Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China)

  • Jianzhuang Xiao

    (Department of Structural Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China)

  • Robert Tiong

    (School of Civil & Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore)

Abstract

Low-carbon building design requests an estimation of total embodied carbon as the environmental performance metric for comparison of different design options in early design stages. Due to a lack of consensus on the system boundaries in building life cycle assessment (LCA), the carbon estimation results obtained by the current methods are often disputable. In this regard, this paper proposes a method for estimating building embodied carbon based on digital twin technology and LCA. The proposed method is advantageous over others by providing (1) a cradle-to-cradle LCA and (2) an automated data communication between LCA and building information modelling (BIM) databases. Because data for the processes in the life cycle are collected via digital twin technology in a standard and consistent way, the obtained results will be considered credible. So far, a conceptual framework is developed based on a comprehensive literature review, which consists of three parts. In the first part, formulas for LCA are given. In the second part, a hybrid approach combining semantic web with a relational database for BIM and radio-frequency identification (RFID) integration is described. In the third part, how to design the LCA database and how to link LCA with BIM are described. The conceptual framework proposed is tested for its reasonableness by a small hypothetical case study.

Suggested Citation

  • Chen Chen & Zengfeng Zhao & Jianzhuang Xiao & Robert Tiong, 2021. "A Conceptual Framework for Estimating Building Embodied Carbon Based on Digital Twin Technology and Life Cycle Assessment," Sustainability, MDPI, vol. 13(24), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13875-:d:703244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13875/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13875/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio Ángel Rodríguez Serrano & Santiago Porras Álvarez, 2016. "Life Cycle Assessment in Building: A Case Study on the Energy and Emissions Impact Related to the Choice of Housing Typologies and Construction Process in Spain," Sustainability, MDPI, vol. 8(3), pages 1-29, March.
    2. Dixit, Manish K., 2017. "Embodied energy analysis of building materials: An improved IO-based hybrid method using sectoral disaggregation," Energy, Elsevier, vol. 124(C), pages 46-58.
    3. Goune Kang & Hunhee Cho & Dongyoun Lee, 2019. "Dynamic Lifecycle Assessment in Building Construction Projects: Focusing on Embodied Emissions," Sustainability, MDPI, vol. 11(13), pages 1-16, July.
    4. Tajda Potrč Obrecht & Martin Röck & Endrit Hoxha & Alexander Passer, 2020. "BIM and LCA Integration: A Systematic Literature Review," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    5. Eleftheriadis, Stathis & Mumovic, Dejan & Greening, Paul, 2017. "Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 811-825.
    6. Arghavan Akbarieh & Laddu Bhagya Jayasinghe & Danièle Waldmann & Felix Norman Teferle, 2020. "BIM-Based End-of-Lifecycle Decision Making and Digital Deconstruction: Literature Review," Sustainability, MDPI, vol. 12(7), pages 1-29, March.
    7. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    8. Dixit, Manish K. & Fernández-Solís, Jose L. & Lavy, Sarel & Culp, Charles H., 2012. "Need for an embodied energy measurement protocol for buildings: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3730-3743.
    9. Pomponi, Francesco & Moncaster, Alice, 2018. "Scrutinising embodied carbon in buildings: The next performance gap made manifest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2431-2442.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Zhihan & Cheng, Chen & Lv, Haibin, 2023. "Digital twins for secure thermal energy storage in building," Applied Energy, Elsevier, vol. 338(C).
    2. Augustine Blay-Armah & Ali Bahadori-Jahromi & Anastasia Mylona & Mark Barthorpe & Marco Ferri, 2022. "An Evaluation of the Impact of Databases on End-of-Life Embodied Carbon Estimation," Sustainability, MDPI, vol. 14(4), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Clyde Zhengdao & Lai, Xulu & Xiao, Bing & Tam, Vivian W.Y. & Guo, Shan & Zhao, Yiyu, 2020. "A holistic review on life cycle energy of buildings: An analysis from 2009 to 2019," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Pan, W. & Teng, Y., 2021. "A systematic investigation into the methodological variables of embodied carbon assessment of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Tomić, Tihomir & Schneider, Daniel Rolph, 2018. "The role of energy from waste in circular economy and closing the loop concept – Energy analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 268-287.
    4. Kai Xue & Md. Uzzal Hossain & Meng Liu & Mingjun Ma & Yizhi Zhang & Mengqiang Hu & XiaoYi Chen & Guangyu Cao, 2021. "BIM Integrated LCA for Promoting Circular Economy towards Sustainable Construction: An Analytical Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    5. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    6. Xingqiang Song & Christel Carlsson & Ramona Kiilsgaard & David Bendz & Helene Kennedy, 2020. "Life Cycle Assessment of Geotechnical Works in Building Construction: A Review and Recommendations," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    7. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Zhou, Wei & Moncaster, Alice & O'Neill, Eoghan & Reiner, David M. & Wang, Xinke & Guthrie, Peter, 2022. "Modelling future trends of annual embodied energy of urban residential building stock in China," Energy Policy, Elsevier, vol. 165(C).
    9. Hossein Omrany & Veronica Soebarto & Ehsan Sharifi & Ali Soltani, 2020. "Application of Life Cycle Energy Assessment in Residential Buildings: A Critical Review of Recent Trends," Sustainability, MDPI, vol. 12(1), pages 1-30, January.
    10. Tiziano Dalla Mora & Erika Bolzonello & Carmine Cavalliere & Fabio Peron, 2020. "Key Parameters Featuring BIM-LCA Integration in Buildings: A Practical Review of the Current Trends," Sustainability, MDPI, vol. 12(17), pages 1-33, September.
    11. Venkatraj, V. & Dixit, M.K., 2021. "Life cycle embodied energy analysis of higher education buildings: A comparison between different LCI methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Suman Paneru & Forough Foroutan Jahromi & Mohsen Hatami & Wilfred Roudebush & Idris Jeelani, 2021. "Integration of Emergy Analysis with Building Information Modeling," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    13. Gao Jingxin & Chen Yunong & Zhong Xiaoyang & Ma Xianrui, 2021. "Energy Consumption in China’s Construction Industry: Energy Driving and Driven Abilities from a Regional Perspective," Journal of Systems Science and Information, De Gruyter, vol. 9(1), pages 45-60, February.
    14. Ming Hu, 2020. "A Building Life-Cycle Embodied Performance Index—The Relationship between Embodied Energy, Embodied Carbon and Environmental Impact," Energies, MDPI, vol. 13(8), pages 1-17, April.
    15. Agnieszka Leśniak & Monika Górka & Izabela Skrzypczak, 2021. "Barriers to BIM Implementation in Architecture, Construction, and Engineering Projects—The Polish Study," Energies, MDPI, vol. 14(8), pages 1-20, April.
    16. Marie Nehasilová & Antonín Lupíšek & Petra Lupíšková Coufalová & Tomáš Kupsa & Jakub Veselka & Barbora Vlasatá & Julie Železná & Pavla Kunová & Martin Volf, 2022. "Rapid Environmental Assessment of Buildings: Linking Environmental and Cost Estimating Databases," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
    17. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    18. Shadram, Farshid & Bhattacharjee, Shimantika & Lidelöw, Sofia & Mukkavaara, Jani & Olofsson, Thomas, 2020. "Exploring the trade-off in life cycle energy of building retrofit through optimization," Applied Energy, Elsevier, vol. 269(C).
    19. Sun, Xiaoqin & Medina, Mario A. & Lee, Kyoung Ok & Jin, Xing, 2018. "Laboratory assessment of residential building walls containing pipe-encapsulated phase change materials for thermal management," Energy, Elsevier, vol. 163(C), pages 383-391.
    20. Hanze Yu & Wei Yang & Qiyuan Li & Jie Li, 2022. "Optimizing Buildings’ Life Cycle Performance While Allowing Diversity in the Early Design Stage," Sustainability, MDPI, vol. 14(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13875-:d:703244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.