Exploring the trade-off in life cycle energy of building retrofit through optimization
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2020.115083
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Beccali, Marco & Cellura, Maurizio & Fontana, Mario & Longo, Sonia & Mistretta, Marina, 2013. "Energy retrofit of a single-family house: Life cycle net energy saving and environmental benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 283-293.
- Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
- García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "ExRET-Opt: An automated exergy/exergoeconomic simulation framework for building energy retrofit analysis and design optimisation," Applied Energy, Elsevier, vol. 192(C), pages 33-58.
- Machairas, Vasileios & Tsangrassoulis, Aris & Axarli, Kleo, 2014. "Algorithms for optimization of building design: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 101-112.
- Ardente, Fulvio & Beccali, Marco & Cellura, Maurizio & Mistretta, Marina, 2011. "Energy and environmental benefits in public buildings as a result of retrofit actions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 460-470, January.
- Khayatian, Fazel & Sarto, Luca & Dall'O', Giuliano, 2017. "Building energy retrofit index for policy making and decision support at regional and national scales," Applied Energy, Elsevier, vol. 206(C), pages 1062-1075.
- Fan, Yuling & Xia, Xiaohua, 2018. "Building retrofit optimization models using notch test data considering energy performance certificate compliance," Applied Energy, Elsevier, vol. 228(C), pages 2140-2152.
- Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
- Shen, Pengyuan & Braham, William & Yi, Yunkyu, 2019. "The feasibility and importance of considering climate change impacts in building retrofit analysis," Applied Energy, Elsevier, vol. 233, pages 254-270.
- Wu, Raphael & Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2017. "Multiobjective optimisation of energy systems and building envelope retrofit in a residential community," Applied Energy, Elsevier, vol. 190(C), pages 634-649.
- Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
- Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
- Fan, Yuling & Xia, Xiaohua, 2017. "A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance," Applied Energy, Elsevier, vol. 189(C), pages 327-335.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- García Kerdan, Iván & Morillón Gálvez, David, 2020. "Artificial neural network structure optimisation for accurately prediction of exergy, comfort and life cycle cost performance of a low energy building," Applied Energy, Elsevier, vol. 280(C).
- Liyanage, Don Rukmal & Hewage, Kasun & Hussain, Syed Asad & Razi, Faran & Sadiq, Rehan, 2024. "Climate adaptation of existing buildings: A critical review on planning energy retrofit strategies for future climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Vahidi, Ehsan & Kirchain, Randolph & Burek, Jasmina & Gregory, Jeremy, 2021. "Regional variation of greenhouse gas mitigation strategies for the United States building sector," Applied Energy, Elsevier, vol. 302(C).
- Li, X. & Densley Tingley, D., 2023. "A whole life, national approach to optimize the thickness of wall insulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
- Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).
- Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
- Fischer, Robert & Toffolo, Andrea, 2022. "Is total system cost minimization fair to all the actors of an energy system? Not according to game theory," Energy, Elsevier, vol. 239(PC).
- Safieddine Ounis & Niccolò Aste & Federico M. Butera & Claudio Del Pero & Fabrizio Leonforte & Rajendra S. Adhikari, 2022. "Optimal Balance between Heating, Cooling and Environmental Impacts: A Method for Appropriate Assessment of Building Envelope’s U-Value," Energies, MDPI, vol. 15(10), pages 1-17, May.
- Luo, Xiaojun & Oyedele, Lukumon O., 2022. "Integrated life-cycle optimisation and supply-side management for building retrofitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Fangyuan Xie & Yi Wu & Xinqi Wang & Xiling Zhou, 2024. "Optimization Strategies for the Envelope of Student Dormitories in Hot Summer and Cold Winter Regions: Multi-Criteria Assessment Method," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohamed Hamdy & Gerardo Maria Mauro, 2017. "Multi-Objective Optimization of Building Energy Design to Reconcile Collective and Private Perspectives: CO 2 -eq vs. Discounted Payback Time," Energies, MDPI, vol. 10(7), pages 1-26, July.
- Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Napolitano, Davide Ferdinando, 2019. "Retrofit of villas on Mediterranean coastlines: Pareto optimization with a view to energy-efficiency and cost-effectiveness," Applied Energy, Elsevier, vol. 254(C).
- Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
- Cascone, Ylenia & Capozzoli, Alfonso & Perino, Marco, 2018. "Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates," Applied Energy, Elsevier, vol. 211(C), pages 929-953.
- Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
- Torres-Rivas, Alba & Palumbo, Mariana & Haddad, Assed & Cabeza, Luisa F. & Jiménez, Laureano & Boer, Dieter, 2018. "Multi-objective optimisation of bio-based thermal insulation materials in building envelopes considering condensation risk," Applied Energy, Elsevier, vol. 224(C), pages 602-614.
- Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
- García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
- Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
- Martin, Rit & Arthur, Thomas & Jonathan, Villot & Mathieu, Thorel & Enora, Garreau & Robin, Girard, 2024. "SHAPE: A temporal optimization model for residential buildings retrofit to discuss policy objectives," Applied Energy, Elsevier, vol. 361(C).
- Venkatraj, V. & Dixit, M.K., 2021. "Life cycle embodied energy analysis of higher education buildings: A comparison between different LCI methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).
- Ali Sadollah & Mohammad Nasir & Zong Woo Geem, 2020. "Sustainability and Optimization: From Conceptual Fundamentals to Applications," Sustainability, MDPI, vol. 12(5), pages 1-34, March.
- Deb, C. & Schlueter, A., 2021. "Review of data-driven energy modelling techniques for building retrofit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Cesare Biserni & Paolo Valdiserri & Dario D’Orazio & Massimo Garai, 2018. "Energy Retrofitting Strategies and Economic Assessments: The Case Study of a Residential Complex Using Utility Bills," Energies, MDPI, vol. 11(8), pages 1-15, August.
- Ascione, Fabrizio & Bianco, Nicola & Maria Mauro, Gerardo & Napolitano, Davide Ferdinando, 2019. "Building envelope design: Multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. Application to different Italian climatic zones," Energy, Elsevier, vol. 174(C), pages 359-374.
- Diana Manjarres & Lara Mabe & Xabat Oregi & Itziar Landa-Torres, 2019. "Two-Stage Multi-Objective Meta-Heuristics for Environmental and Cost-Optimal Energy Refurbishment at District Level," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
- Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
- Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
- Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
More about this item
Keywords
Building retrofit; Embodied energy; Life cycle energy; Multi-objective optimization; Operational energy; Retrofitting measures;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:269:y:2020:i:c:s030626192030595x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.