IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v269y2020ics030626192030595x.html
   My bibliography  Save this article

Exploring the trade-off in life cycle energy of building retrofit through optimization

Author

Listed:
  • Shadram, Farshid
  • Bhattacharjee, Shimantika
  • Lidelöw, Sofia
  • Mukkavaara, Jani
  • Olofsson, Thomas

Abstract

Building retrofit is considered as a vital step to achieve energy and climate goals in both Europe and Sweden. Nevertheless, retrofitting solutions based merely on reducing operational energy use can increase embodied energy use, mainly due to altering the existing trade-off between the two. Considering this trade-off is vitally important, especially for retrofitting buildings located in cold climate regions, as reduction of operational energy use to meet standards of energy-efficient buildings may require a deep retrofitting that can considerably increase the embodied energy and thus be unfavorable from a Life Cycle Energy (LCE) perspective. This article presents a case study in which multi-objective optimization was used to explore the impact of a wide range of retrofitting measures on the aforementioned trade-off for a building in Sweden located in a subarctic climatic zone. The studied building was a typical 1980s multi-family residence. The goal was to explore and compare the optimal retrofitting solution(s) for the building, aiming to achieve Swedish energy-efficient building standards (i.e. new-build and near-zero energy standards). The results of the optimization indicated that (1) use of additional insulation in walls and roof, (2) replacement of existing windows with more energy-efficient ones, and (3) change of traditional mechanical extract ventilation to heat recovery ventilation are the primary and optimal retrofitting measures to fulfill the new-build Swedish energy standard and achieve highest LCE savings. However, to fulfill more far-reaching operational energy savings, application of additional retrofitting measures was required, increasing the embodied energy use considerably and resulting in lower LCE savings compared to the optimal retrofitting solution that only reached the Swedish new-build energy standard. The LCE difference between the optimal retrofitting solutions that fulfilled the new-build standard and the strictest near-zero (passive house) standard was 1862 GJ, which is equivalent to almost four years of operational energy use for the original building. This indicates that there is a limit to the reduction of operational energy use when retrofitting existing buildings, beyond which additional reductions can considerably increase the embodied energy and thus be unfavorable in terms of LCE use.

Suggested Citation

  • Shadram, Farshid & Bhattacharjee, Shimantika & Lidelöw, Sofia & Mukkavaara, Jani & Olofsson, Thomas, 2020. "Exploring the trade-off in life cycle energy of building retrofit through optimization," Applied Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:appene:v:269:y:2020:i:c:s030626192030595x
    DOI: 10.1016/j.apenergy.2020.115083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192030595X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    2. Machairas, Vasileios & Tsangrassoulis, Aris & Axarli, Kleo, 2014. "Algorithms for optimization of building design: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 101-112.
    3. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    4. Beccali, Marco & Cellura, Maurizio & Fontana, Mario & Longo, Sonia & Mistretta, Marina, 2013. "Energy retrofit of a single-family house: Life cycle net energy saving and environmental benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 283-293.
    5. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "ExRET-Opt: An automated exergy/exergoeconomic simulation framework for building energy retrofit analysis and design optimisation," Applied Energy, Elsevier, vol. 192(C), pages 33-58.
    6. Fan, Yuling & Xia, Xiaohua, 2018. "Building retrofit optimization models using notch test data considering energy performance certificate compliance," Applied Energy, Elsevier, vol. 228(C), pages 2140-2152.
    7. Khayatian, Fazel & Sarto, Luca & Dall'O', Giuliano, 2017. "Building energy retrofit index for policy making and decision support at regional and national scales," Applied Energy, Elsevier, vol. 206(C), pages 1062-1075.
    8. Wu, Raphael & Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2017. "Multiobjective optimisation of energy systems and building envelope retrofit in a residential community," Applied Energy, Elsevier, vol. 190(C), pages 634-649.
    9. Ardente, Fulvio & Beccali, Marco & Cellura, Maurizio & Mistretta, Marina, 2011. "Energy and environmental benefits in public buildings as a result of retrofit actions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 460-470, January.
    10. Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
    11. Shen, Pengyuan & Braham, William & Yi, Yunkyu, 2019. "The feasibility and importance of considering climate change impacts in building retrofit analysis," Applied Energy, Elsevier, vol. 233, pages 254-270.
    12. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
    13. Fan, Yuling & Xia, Xiaohua, 2017. "A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance," Applied Energy, Elsevier, vol. 189(C), pages 327-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, X. & Densley Tingley, D., 2023. "A whole life, national approach to optimize the thickness of wall insulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    2. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    3. Fischer, Robert & Toffolo, Andrea, 2022. "Is total system cost minimization fair to all the actors of an energy system? Not according to game theory," Energy, Elsevier, vol. 239(PC).
    4. Safieddine Ounis & Niccolò Aste & Federico M. Butera & Claudio Del Pero & Fabrizio Leonforte & Rajendra S. Adhikari, 2022. "Optimal Balance between Heating, Cooling and Environmental Impacts: A Method for Appropriate Assessment of Building Envelope’s U-Value," Energies, MDPI, vol. 15(10), pages 1-17, May.
    5. Luo, Xiaojun & Oyedele, Lukumon O., 2022. "Integrated life-cycle optimisation and supply-side management for building retrofitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Fangyuan Xie & Yi Wu & Xinqi Wang & Xiling Zhou, 2024. "Optimization Strategies for the Envelope of Student Dormitories in Hot Summer and Cold Winter Regions: Multi-Criteria Assessment Method," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    7. García Kerdan, Iván & Morillón Gálvez, David, 2020. "Artificial neural network structure optimisation for accurately prediction of exergy, comfort and life cycle cost performance of a low energy building," Applied Energy, Elsevier, vol. 280(C).
    8. Liyanage, Don Rukmal & Hewage, Kasun & Hussain, Syed Asad & Razi, Faran & Sadiq, Rehan, 2024. "Climate adaptation of existing buildings: A critical review on planning energy retrofit strategies for future climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Vahidi, Ehsan & Kirchain, Randolph & Burek, Jasmina & Gregory, Jeremy, 2021. "Regional variation of greenhouse gas mitigation strategies for the United States building sector," Applied Energy, Elsevier, vol. 302(C).
    10. Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Hamdy & Gerardo Maria Mauro, 2017. "Multi-Objective Optimization of Building Energy Design to Reconcile Collective and Private Perspectives: CO 2 -eq vs. Discounted Payback Time," Energies, MDPI, vol. 10(7), pages 1-26, July.
    2. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
    3. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Napolitano, Davide Ferdinando, 2019. "Retrofit of villas on Mediterranean coastlines: Pareto optimization with a view to energy-efficiency and cost-effectiveness," Applied Energy, Elsevier, vol. 254(C).
    4. Cascone, Ylenia & Capozzoli, Alfonso & Perino, Marco, 2018. "Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates," Applied Energy, Elsevier, vol. 211(C), pages 929-953.
    5. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    6. Torres-Rivas, Alba & Palumbo, Mariana & Haddad, Assed & Cabeza, Luisa F. & Jiménez, Laureano & Boer, Dieter, 2018. "Multi-objective optimisation of bio-based thermal insulation materials in building envelopes considering condensation risk," Applied Energy, Elsevier, vol. 224(C), pages 602-614.
    7. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    8. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    9. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    10. Martin, Rit & Arthur, Thomas & Jonathan, Villot & Mathieu, Thorel & Enora, Garreau & Robin, Girard, 2024. "SHAPE: A temporal optimization model for residential buildings retrofit to discuss policy objectives," Applied Energy, Elsevier, vol. 361(C).
    11. Deb, C. & Schlueter, A., 2021. "Review of data-driven energy modelling techniques for building retrofit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Cesare Biserni & Paolo Valdiserri & Dario D’Orazio & Massimo Garai, 2018. "Energy Retrofitting Strategies and Economic Assessments: The Case Study of a Residential Complex Using Utility Bills," Energies, MDPI, vol. 11(8), pages 1-15, August.
    13. Venkatraj, V. & Dixit, M.K., 2021. "Life cycle embodied energy analysis of higher education buildings: A comparison between different LCI methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Ascione, Fabrizio & Bianco, Nicola & Maria Mauro, Gerardo & Napolitano, Davide Ferdinando, 2019. "Building envelope design: Multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. Application to different Italian climatic zones," Energy, Elsevier, vol. 174(C), pages 359-374.
    15. Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).
    16. Ali Sadollah & Mohammad Nasir & Zong Woo Geem, 2020. "Sustainability and Optimization: From Conceptual Fundamentals to Applications," Sustainability, MDPI, vol. 12(5), pages 1-34, March.
    17. Diana Manjarres & Lara Mabe & Xabat Oregi & Itziar Landa-Torres, 2019. "Two-Stage Multi-Objective Meta-Heuristics for Environmental and Cost-Optimal Energy Refurbishment at District Level," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    18. Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
    19. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    20. Schito, Eva & Conti, Paolo & Testi, Daniele, 2018. "Multi-objective optimization of microclimate in museums for concurrent reduction of energy needs, visitors’ discomfort and artwork preservation risks," Applied Energy, Elsevier, vol. 224(C), pages 147-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:269:y:2020:i:c:s030626192030595x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.