IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8316-d857648.html
   My bibliography  Save this article

Optimizing Buildings’ Life Cycle Performance While Allowing Diversity in the Early Design Stage

Author

Listed:
  • Hanze Yu

    (School of Architecture, Tianjin University, No. 92 Weijin Rd., Nankai District, Tianjin 300072, China)

  • Wei Yang

    (School of Architecture, Tianjin University, No. 92 Weijin Rd., Nankai District, Tianjin 300072, China)

  • Qiyuan Li

    (School of Architecture, Tianjin University, No. 92 Weijin Rd., Nankai District, Tianjin 300072, China)

  • Jie Li

    (School of Architecture, Tianjin University, No. 92 Weijin Rd., Nankai District, Tianjin 300072, China)

Abstract

The main considerations in the early stage of architectural design are usually related to form and function. At the same time, with the growing concern regarding energy saving and carbon emission reduction, the parameters for the construction and physical quality of buildings are receiving more attention at the conceptual and schematic design stages. Diverse design options can emerge with the large number of variables to be considered in these stages. Moreover, the combined efforts to reduce buildings’ life cycle environmental impacts and cost, as well as the non-linear and often tradeoff relationship between the two objectives, make finding optimal design solutions for buildings’ life cycle performance complicated. Previous studies have established workflows to optimize buildings’ life cycle energy consumption, GWP, and/or cost; however, architectural design diversity has not been sufficiently discussed at the same time. In this study, a parametric optimization design process is established, aiming at minimizing the building’s operational energy consumption, life cycle environmental impacts, and life cycle cost. The setting of variables, as well as the workflows of the optimization process, is discussed from the perspective of both life cycle performance and architectural design diversity. A small-scale exhibition hall in China’s cold climate zone is selected as a case study. To approach the best design process applicable to this case, the optimal solution sets from different workflows under different variable settings are compared. The results show that by setting geometric and material variables in different steps in the entire optimization process, the resulting solutions can be a balance of architectural design and performance. In this case study, optimizing all of the design variables in one-step turned out to provide the best balance between design diversity and life cycle performance in the early design stage.

Suggested Citation

  • Hanze Yu & Wei Yang & Qiyuan Li & Jie Li, 2022. "Optimizing Buildings’ Life Cycle Performance While Allowing Diversity in the Early Design Stage," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8316-:d:857648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8316/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8316/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessandra Battisti & Sandra G. L. Persiani & Manuela Crespi, 2019. "Review and Mapping of Parameters for the Early Stage Design of Adaptive Building Technologies through Life Cycle Assessment Tools," Energies, MDPI, vol. 12(9), pages 1-33, May.
    2. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
    3. Li, Hangxin & Wang, Shengwei, 2019. "Coordinated optimal design of zero/low energy buildings and their energy systems based on multi-stage design optimization," Energy, Elsevier, vol. 189(C).
    4. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    5. Cristina Brunelli & Francesco Castellani & Alberto Garinei & Lorenzo Biondi & Marcello Marconi, 2016. "A Procedure to Perform Multi-Objective Optimization for Sustainable Design of Buildings," Energies, MDPI, vol. 9(11), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zihan Zhang & Wanjiang Wang & Junkang Song & Zhe Wang & Weiyi Wang, 2022. "Multi-Objective Optimization of Ultra-Low Energy Consumption Buildings in Severely Cold Regions Considering Life Cycle Performance," Sustainability, MDPI, vol. 14(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Sadollah & Mohammad Nasir & Zong Woo Geem, 2020. "Sustainability and Optimization: From Conceptual Fundamentals to Applications," Sustainability, MDPI, vol. 12(5), pages 1-34, March.
    2. Małgorzata Basińska & Dobrosława Kaczorek & Halina Koczyk, 2020. "Building Thermo-Modernisation Solution Based on the Multi-Objective Optimisation Method," Energies, MDPI, vol. 13(6), pages 1-19, March.
    3. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    4. Zhan, Jin & He, Wenjing & Huang, Jianxiang, 2024. "Comfort, carbon emissions, and cost of building envelope and photovoltaic arrangement optimization through a two-stage model," Applied Energy, Elsevier, vol. 356(C).
    5. Li, Sihui & Peng, Jinqing & Wang, Meng & Wang, Kai & Li, Houpei & Lu, Chujie, 2024. "Approaching nearly zero energy of PV direct air conditioners by integrating building design, load flexibility and PCM," Renewable Energy, Elsevier, vol. 221(C).
    6. Chi, Fang'ai & Xu, Ying, 2022. "Building performance optimization for university dormitory through integration of digital gene map into multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 307(C).
    7. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    8. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    9. Shadram, Farshid & Bhattacharjee, Shimantika & Lidelöw, Sofia & Mukkavaara, Jani & Olofsson, Thomas, 2020. "Exploring the trade-off in life cycle energy of building retrofit through optimization," Applied Energy, Elsevier, vol. 269(C).
    10. Sun, Xiaoqin & Medina, Mario A. & Lee, Kyoung Ok & Jin, Xing, 2018. "Laboratory assessment of residential building walls containing pipe-encapsulated phase change materials for thermal management," Energy, Elsevier, vol. 163(C), pages 383-391.
    11. Tomić, Tihomir & Schneider, Daniel Rolph, 2018. "The role of energy from waste in circular economy and closing the loop concept – Energy analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 268-287.
    12. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    13. Zhu, Xu & Zhang, Shuai & Jin, Xinqiao & Du, Zhimin, 2020. "Deep learning based reference model for operational risk evaluation of screw chillers for energy efficiency," Energy, Elsevier, vol. 213(C).
    14. Seungjun Roh & Sungho Tae & Rakhyun Kim, 2018. "Analysis of Embodied Environmental Impacts of Korean Apartment Buildings Considering Major Building Materials," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    15. Lu, Jiapan & Luo, Xiaoyu & Cao, Xingyu, 2024. "Research on geometry optimization of park office buildings with the goal of zero energy," Energy, Elsevier, vol. 306(C).
    16. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
    17. Mohamed Hamdy & Gerardo Maria Mauro, 2017. "Multi-Objective Optimization of Building Energy Design to Reconcile Collective and Private Perspectives: CO 2 -eq vs. Discounted Payback Time," Energies, MDPI, vol. 10(7), pages 1-26, July.
    18. Carla Rodrigues & João Almeida & Maria Inês Santos & Andreia Costa & Sandra Além & Emanuel Rufo & António Tadeu & Fausto Freire, 2021. "Environmental Life-Cycle Assessment of an Innovative Multifunctional Toilet," Energies, MDPI, vol. 14(8), pages 1-15, April.
    19. Li, Hangxin & Wang, Shengwei, 2020. "Coordinated robust optimal design of building envelope and energy systems for zero/low energy buildings considering uncertainties," Applied Energy, Elsevier, vol. 265(C).
    20. Hasim Altan & Bertug Ozarisoy, 2022. "An Analysis of the Development of Modular Building Design Elements to Improve Thermal Performance of a Representative High Rise Residential Estate in the Coastline City of Famagusta, Cyprus," Sustainability, MDPI, vol. 14(7), pages 1-50, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8316-:d:857648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.