IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v144y2021ics1364032121002495.html
   My bibliography  Save this article

Life cycle embodied energy analysis of higher education buildings: A comparison between different LCI methodologies

Author

Listed:
  • Venkatraj, V.
  • Dixit, M.K.

Abstract

Nearly half of the global annual energy supply is consumed by the building construction sector, indicating an enormous potential to minimize the carbon footprint. During its life cycle, a building consumes energy in the form of embodied and operational energy. Embodied energy (EE) is expended in processes during construction (ex: extraction of raw material, transportation, manufacturing, etc.). Operating energy (OE) is spent on operating and maintaining the building to ensure occupant comfort. Unlike OE, the methods used to calculate EE are complex, unstandardized, and time-consuming. Each EE calculation method utilizes different sources of data and system boundary definitions, therefore making it difficult to comprehensively evaluate building life cycle energy (LCE). Literature suggests that the disaggregated input-output based hybrid (IOH) approach is more accurate, complete, and reliable in comparison to the other EE calculation methods. In this study, we examine the EE-OE relationship by calculating EE factors for a newly constructed and renovated educational building. Next, we also compare the variation in EE factors across different life cycle inventory (LCI) methods (process-based, aggregated IOH, and disaggregated IOH). The results of this study indicate that using different LCI techniques to calculate EE causes massive variations in EE factors, which represent the EE expense of saving one unit of OE. The findings of our study and literature review show that the process-based approach underestimates EE, therefore the values of EE factors calculated using this approach need to be interpreted with caution. These results further elucidate the importance of standardizing the EE calculation method.

Suggested Citation

  • Venkatraj, V. & Dixit, M.K., 2021. "Life cycle embodied energy analysis of higher education buildings: A comparison between different LCI methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002495
    DOI: 10.1016/j.rser.2021.110957
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121002495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110957?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    2. Hernandez, Patxi & Kenny, Paul, 2011. "Development of a methodology for life cycle building energy ratings," Energy Policy, Elsevier, vol. 39(6), pages 3779-3788, June.
    3. Beccali, Marco & Cellura, Maurizio & Fontana, Mario & Longo, Sonia & Mistretta, Marina, 2013. "Energy retrofit of a single-family house: Life cycle net energy saving and environmental benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 283-293.
    4. Stephan, André & Stephan, Laurent, 2016. "Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings," Applied Energy, Elsevier, vol. 161(C), pages 445-464.
    5. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    6. Karen J. Horowitz & Mark A. Planting, 2006. "Concepts and Methods of the U.S. Input-Output Accounts," BEA Papers 0066, Bureau of Economic Analysis.
    7. Philip J. Davies & Stephen Emmitt & Steven K. Firth, 2014. "Challenges for capturing and assessing initial embodied energy: a contractor's perspective," Construction Management and Economics, Taylor & Francis Journals, vol. 32(3), pages 290-308, March.
    8. Zuo, Jian & Pullen, Stephen & Rameezdeen, Raufdeen & Bennetts, Helen & Wang, Yuan & Mao, Guozhu & Zhou, Zhihua & Du, Huibin & Duan, Huabo, 2017. "Green building evaluation from a life-cycle perspective in Australia: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 358-368.
    9. Bin, Guoshu & Parker, Paul, 2012. "Measuring buildings for sustainability: Comparing the initial and retrofit ecological footprint of a century home – The REEP House," Applied Energy, Elsevier, vol. 93(C), pages 24-32.
    10. Manfred Lenzen, 2000. "Errors in Conventional and Input‐Output—based Life—Cycle Inventories," Journal of Industrial Ecology, Yale University, vol. 4(4), pages 127-148, October.
    11. Rauf, Abdul & Crawford, Robert H., 2015. "Building service life and its effect on the life cycle embodied energy of buildings," Energy, Elsevier, vol. 79(C), pages 140-148.
    12. Yohanis, Y.G. & Norton, B., 2002. "Life-cycle operational and embodied energy for a generic single-storey office building in the UK," Energy, Elsevier, vol. 27(1), pages 77-92.
    13. Dixit, Manish K. & Fernández-Solís, Jose L. & Lavy, Sarel & Culp, Charles H., 2012. "Need for an embodied energy measurement protocol for buildings: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3730-3743.
    14. Stephan, André & Crawford, Robert H. & de Myttenaere, Kristel, 2013. "A comprehensive assessment of the life cycle energy demand of passive houses," Applied Energy, Elsevier, vol. 112(C), pages 23-34.
    15. Dixit, Manish K. & Culp, Charles H. & Fernández-Solís, Jose L., 2013. "System boundary for embodied energy in buildings: A conceptual model for definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 153-164.
    16. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lara Allende, Alejandro & Stephan, André, 2022. "Life cycle embodied, operational and mobility-related energy and greenhouse gas emissions analysis of a green development in Melbourne, Australia," Applied Energy, Elsevier, vol. 305(C).
    2. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    2. Li, Clyde Zhengdao & Lai, Xulu & Xiao, Bing & Tam, Vivian W.Y. & Guo, Shan & Zhao, Yiyu, 2020. "A holistic review on life cycle energy of buildings: An analysis from 2009 to 2019," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Dixit, Manish K., 2017. "Embodied energy analysis of building materials: An improved IO-based hybrid method using sectoral disaggregation," Energy, Elsevier, vol. 124(C), pages 46-58.
    4. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
    5. Hossein Omrany & Veronica Soebarto & Ehsan Sharifi & Ali Soltani, 2020. "Application of Life Cycle Energy Assessment in Residential Buildings: A Critical Review of Recent Trends," Sustainability, MDPI, vol. 12(1), pages 1-30, January.
    6. Stephan, André & Stephan, Laurent, 2014. "Reducing the total life cycle energy demand of recent residential buildings in Lebanon," Energy, Elsevier, vol. 74(C), pages 618-637.
    7. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Crawford, Robert H. & Bartak, Erika L. & Stephan, André & Jensen, Christopher A., 2016. "Evaluating the life cycle energy benefits of energy efficiency regulations for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 435-451.
    9. Stephan, André & Stephan, Laurent, 2016. "Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings," Applied Energy, Elsevier, vol. 161(C), pages 445-464.
    10. Hsien-Te Lin & Yi-Jiung Lin, 2022. "Component-level embodied carbon database for landscape hard works in Taiwan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4918-4941, April.
    11. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    12. Shadram, Farshid & Bhattacharjee, Shimantika & Lidelöw, Sofia & Mukkavaara, Jani & Olofsson, Thomas, 2020. "Exploring the trade-off in life cycle energy of building retrofit through optimization," Applied Energy, Elsevier, vol. 269(C).
    13. Tomić, Tihomir & Schneider, Daniel Rolph, 2018. "The role of energy from waste in circular economy and closing the loop concept – Energy analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 268-287.
    14. Kimberly Bawden & Eric Williams, 2015. "Hybrid Life Cycle Assessment of Low, Mid and High-Rise Multi-Family Dwellings," Challenges, MDPI, vol. 6(1), pages 1-19, April.
    15. Pan, W. & Teng, Y., 2021. "A systematic investigation into the methodological variables of embodied carbon assessment of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Stephan, André & Stephan, Laurent, 2020. "Achieving net zero life cycle primary energy and greenhouse gas emissions apartment buildings in a Mediterranean climate," Applied Energy, Elsevier, vol. 280(C).
    17. Atmaca, Adem & Atmaca, Nihat, 2016. "Comparative life cycle energy and cost analysis of post-disaster temporary housings," Applied Energy, Elsevier, vol. 171(C), pages 429-443.
    18. Echarri-Iribarren, Victor & Echarri-Iribarren, Fernando & Rizo-Maestre, Carlos, 2019. "Ceramic panels versus aluminium in buildings: Energy consumption and environmental impact assessment with a new methodology," Applied Energy, Elsevier, vol. 233, pages 959-974.
    19. Lara Allende, Alejandro & Stephan, André, 2022. "Life cycle embodied, operational and mobility-related energy and greenhouse gas emissions analysis of a green development in Melbourne, Australia," Applied Energy, Elsevier, vol. 305(C).
    20. Pan, Wei & Li, Kaijian & Teng, Yue, 2018. "Rethinking system boundaries of the life cycle carbon emissions of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 379-390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.