IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v211y2018icp774-791.html
   My bibliography  Save this article

A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization

Author

Listed:
  • Nunes, H.G.G.
  • Pombo, J.A.N.
  • Mariano, S.J.P.S.
  • Calado, M.R.A.
  • Felippe de Souza, J.A.M.

Abstract

Determining the mathematical model parameters of photovoltaic (PV) cells and modules represents a great challenge. In the last few years, several analytical, numerical and hybrid methods have been proposed for extracting the PV model parameters from datasheets provided by the manufacturers or from experimental data, although it is difficult to determine highly reliable solutions quickly and accurately. In this paper, we propose a new method for determining the PV parameters of both the single-diode and the double-diode models, based on the guaranteed convergence particle swarm optimization (GCPSO), using experimental data under different operating conditions. The main advantage of this method is its ability to avoid premature convergence in the optimization of complex and multimodal objective functions, such as the function that determines PV parameters. To validate performance, the GCPSO method was compared with several analytical, numerical and hybrid methods found in the literature. This validation considered three different case studies. The first two are important reference case studies in the literature and have been widely used by researchers. The third was performed in an experimental environment, in order to test the proposed method under a real implementation. The proposed methodology can find highly accurate solutions while demanding a reduced computational cost. Comparisons with other published methods demonstrate that the proposed method produces very good results in the extraction of the PV model parameters.

Suggested Citation

  • Nunes, H.G.G. & Pombo, J.A.N. & Mariano, S.J.P.S. & Calado, M.R.A. & Felippe de Souza, J.A.M., 2018. "A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization," Applied Energy, Elsevier, vol. 211(C), pages 774-791.
  • Handle: RePEc:eee:appene:v:211:y:2018:i:c:p:774-791
    DOI: 10.1016/j.apenergy.2017.11.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191731677X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.11.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhicong & Wu, Lijun & Lin, Peijie & Wu, Yue & Cheng, Shuying, 2016. "Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy," Applied Energy, Elsevier, vol. 182(C), pages 47-57.
    2. Oliva, Diego & Abd El Aziz, Mohamed & Ella Hassanien, Aboul, 2017. "Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm," Applied Energy, Elsevier, vol. 200(C), pages 141-154.
    3. Rongjie Wang & Yiju Zhan & Haifeng Zhou, 2015. "Application of Artificial Bee Colony in Model Parameter Identification of Solar Cells," Energies, MDPI, vol. 8(8), pages 1-19, July.
    4. Lo Brano, Valerio & Ciulla, Giuseppina, 2013. "An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data," Applied Energy, Elsevier, vol. 111(C), pages 894-903.
    5. Jiang, Lian Lian & Maskell, Douglas L. & Patra, Jagdish C., 2013. "Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm," Applied Energy, Elsevier, vol. 112(C), pages 185-193.
    6. Patel, Sanjaykumar J. & Panchal, Ashish K. & Kheraj, Vipul, 2014. "Extraction of solar cell parameters from a single current–voltage characteristic using teaching learning based optimization algorithm," Applied Energy, Elsevier, vol. 119(C), pages 384-393.
    7. Chen, Xu & Yu, Kunjie & Du, Wenli & Zhao, Wenxiang & Liu, Guohai, 2016. "Parameters identification of solar cell models using generalized oppositional teaching learning based optimization," Energy, Elsevier, vol. 99(C), pages 170-180.
    8. Askarzadeh, Alireza & Rezazadeh, Alireza, 2013. "Artificial bee swarm optimization algorithm for parameters identification of solar cell models," Applied Energy, Elsevier, vol. 102(C), pages 943-949.
    9. Chellaswamy, C. & Ramesh, R., 2016. "Parameter extraction of solar cell models based on adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 97(C), pages 823-837.
    10. Oliva, Diego & Cuevas, Erik & Pajares, Gonzalo, 2014. "Parameter identification of solar cells using artificial bee colony optimization," Energy, Elsevier, vol. 72(C), pages 93-102.
    11. Laudani, Antonino & Fulginei, Francesco Riganti, 2014. "Comments on “An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data” (Appl. Energy 111 (2013) 894–903)," Applied Energy, Elsevier, vol. 129(C), pages 395-397.
    12. Diego Oliva & Ahmed A. Ewees & Mohamed Abd El Aziz & Aboul Ella Hassanien & Marco Peréz-Cisneros, 2017. "A Chaotic Improved Artificial Bee Colony for Parameter Estimation of Photovoltaic Cells," Energies, MDPI, vol. 10(7), pages 1-19, June.
    13. Tong, Nhan Thanh & Pora, Wanchalerm, 2016. "A parameter extraction technique exploiting intrinsic properties of solar cells," Applied Energy, Elsevier, vol. 176(C), pages 104-115.
    14. AlHajri, M.F. & El-Naggar, K.M. & AlRashidi, M.R. & Al-Othman, A.K., 2012. "Optimal extraction of solar cell parameters using pattern search," Renewable Energy, Elsevier, vol. 44(C), pages 238-245.
    15. Chen, Yifeng & Wang, Xuemeng & Li, Da & Hong, Ruijiang & Shen, Hui, 2011. "Parameters extraction from commercial solar cells I-V characteristics and shunt analysis," Applied Energy, Elsevier, vol. 88(6), pages 2239-2244, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaabane Bouali & Horst Schulte & Abdelkader Mami, 2019. "A High Performance Optimizing Method for Modeling Photovoltaic Cells and Modules Array Based on Discrete Symbiosis Organism Search," Energies, MDPI, vol. 12(12), pages 1-32, June.
    2. Arooj Tariq Kiani & Muhammad Faisal Nadeem & Ali Ahmed & Irfan Khan & Rajvikram Madurai Elavarasan & Narottam Das, 2020. "Optimal PV Parameter Estimation via Double Exponential Function-Based Dynamic Inertia Weight Particle Swarm Optimization," Energies, MDPI, vol. 13(15), pages 1-26, August.
    3. Zhang, Yunpeng & Hao, Peng & Lu, Hao & Ma, Jiao & Yang, Ming, 2022. "Modelling and estimating performance for PV module under varying operating conditions independent of reference condition," Applied Energy, Elsevier, vol. 310(C).
    4. Mohamed Abdel-Basset & Reda Mohamed & Attia El-Fergany & Mohamed Abouhawwash & S. S. Askar, 2021. "Parameters Identification of PV Triple-Diode Model Using Improved Generalized Normal Distribution Algorithm," Mathematics, MDPI, vol. 9(9), pages 1-23, April.
    5. Zou, Dexuan & Gong, Dunwei, 2022. "Differential evolution based on migrating variables for the combined heat and power dynamic economic dispatch," Energy, Elsevier, vol. 238(PA).
    6. Mohamed Abdel-Basset & Reda Mohamed & Ripon K. Chakrabortty & Michael J. Ryan & Attia El-Fergany, 2021. "An Improved Artificial Jellyfish Search Optimizer for Parameter Identification of Photovoltaic Models," Energies, MDPI, vol. 14(7), pages 1-33, March.
    7. Xin-gang, Zhao & Ze-qi, Zhang & Yi-min, Xie & Jin, Meng, 2020. "Economic-environmental dispatch of microgrid based on improved quantum particle swarm optimization," Energy, Elsevier, vol. 195(C).
    8. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2020. "Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization," Energy, Elsevier, vol. 195(C).
    9. Neshat, Mehdi & Mirjalili, Seyedali & Sergiienko, Nataliia Y. & Esmaeilzadeh, Soheil & Amini, Erfan & Heydari, Azim & Garcia, Davide Astiaso, 2022. "Layout optimisation of offshore wave energy converters using a novel multi-swarm cooperative algorithm with backtracking strategy: A case study from coasts of Australia," Energy, Elsevier, vol. 239(PE).
    10. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    11. Hassan Shaban & Essam H. Houssein & Marco Pérez-Cisneros & Diego Oliva & Amir Y. Hassan & Alaa A. K. Ismaeel & Diaa Salama AbdElminaam & Sanchari Deb & Mokhtar Said, 2021. "Identification of Parameters in Photovoltaic Models through a Runge Kutta Optimizer," Mathematics, MDPI, vol. 9(18), pages 1-22, September.
    12. Wu, Lijun & Chen, Zhicong & Long, Chao & Cheng, Shuying & Lin, Peijie & Chen, Yixiang & Chen, Huihuang, 2018. "Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm," Applied Energy, Elsevier, vol. 232(C), pages 36-53.
    13. Rongjie Wang, 2021. "Parameter Identification of Photovoltaic Cell Model Based on Enhanced Particle Swarm Optimization," Sustainability, MDPI, vol. 13(2), pages 1-23, January.
    14. Ju, Liwei & Tan, Qinliang & Lin, Hongyu & Mei, Shufang & Li, Nan & Lu, Yan & Wang, Yao, 2020. "A two-stage optimal coordinated scheduling strategy for micro energy grid integrating intermittent renewable energy sources considering multi-energy flexible conversion," Energy, Elsevier, vol. 196(C).
    15. Mohamed Abdel-Basset & Reda Mohamed & Attia El-Fergany & Sameh S. Askar & Mohamed Abouhawwash, 2021. "Efficient Ranking-Based Whale Optimizer for Parameter Extraction of Three-Diode Photovoltaic Model: Analysis and Validations," Energies, MDPI, vol. 14(13), pages 1-20, June.
    16. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    17. Frangopoulos, Christos A., 2018. "Recent developments and trends in optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 1011-1020.
    18. Long, Wen & Wu, Tiebin & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2021. "Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm," Energy, Elsevier, vol. 229(C).
    19. Yousri, Dalia & Thanikanti, Sudhakar Babu & Allam, Dalia & Ramachandaramurthy, Vigna K. & Eteiba, M.B., 2020. "Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models’ parameters," Energy, Elsevier, vol. 195(C).
    20. Yu, Kunjie & Qu, Boyang & Yue, Caitong & Ge, Shilei & Chen, Xu & Liang, Jing, 2019. "A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module," Applied Energy, Elsevier, vol. 237(C), pages 241-257.
    21. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2019. "Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm," Applied Energy, Elsevier, vol. 250(C), pages 109-117.
    22. Arooj Tariq Kiani & Muhammad Faisal Nadeem & Ali Ahmed & Irfan A. Khan & Hend I. Alkhammash & Intisar Ali Sajjad & Babar Hussain, 2021. "An Improved Particle Swarm Optimization with Chaotic Inertia Weight and Acceleration Coefficients for Optimal Extraction of PV Models Parameters," Energies, MDPI, vol. 14(11), pages 1-24, May.
    23. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Ćalasan & Dražen Jovanović & Vesna Rubežić & Saša Mujović & Slobodan Đukanović, 2019. "Estimation of Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization Approach," Energies, MDPI, vol. 12(21), pages 1-14, November.
    2. Chin, Vun Jack & Salam, Zainal, 2019. "A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells," Applied Energy, Elsevier, vol. 237(C), pages 519-533.
    3. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    4. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    5. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Wu, Lijun & Chen, Zhicong & Long, Chao & Cheng, Shuying & Lin, Peijie & Chen, Yixiang & Chen, Huihuang, 2018. "Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm," Applied Energy, Elsevier, vol. 232(C), pages 36-53.
    7. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    8. Lin, Xiankun & Wu, Yuhang, 2020. "Parameters identification of photovoltaic models using niche-based particle swarm optimization in parallel computing architecture," Energy, Elsevier, vol. 196(C).
    9. Chen, Xu & Xu, Bin & Mei, Congli & Ding, Yuhan & Li, Kangji, 2018. "Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation," Applied Energy, Elsevier, vol. 212(C), pages 1578-1588.
    10. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    11. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    12. Chaabane Bouali & Horst Schulte & Abdelkader Mami, 2019. "A High Performance Optimizing Method for Modeling Photovoltaic Cells and Modules Array Based on Discrete Symbiosis Organism Search," Energies, MDPI, vol. 12(12), pages 1-32, June.
    13. Huawen Sheng & Chunquan Li & Hanming Wang & Zeyuan Yan & Yin Xiong & Zhenting Cao & Qianying Kuang, 2019. "Parameters Extraction of Photovoltaic Models Using an Improved Moth-Flame Optimization," Energies, MDPI, vol. 12(18), pages 1-23, September.
    14. Blaifi, Sid-ali & Moulahoum, Samir & Taghezouit, Bilal & Saim, Abdelhakim, 2019. "An enhanced dynamic modeling of PV module using Levenberg-Marquardt algorithm," Renewable Energy, Elsevier, vol. 135(C), pages 745-760.
    15. Peñaranda Chenche, Luz Elena & Hernandez Mendoza, Oscar Saul & Bandarra Filho, Enio Pedone, 2018. "Comparison of four methods for parameter estimation of mono- and multi-junction photovoltaic devices using experimental data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2823-2838.
    16. Chen, Zhicong & Wu, Lijun & Lin, Peijie & Wu, Yue & Cheng, Shuying, 2016. "Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy," Applied Energy, Elsevier, vol. 182(C), pages 47-57.
    17. Long, Wen & Wu, Tiebin & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2021. "Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm," Energy, Elsevier, vol. 229(C).
    18. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    19. Hassan Shaban & Essam H. Houssein & Marco Pérez-Cisneros & Diego Oliva & Amir Y. Hassan & Alaa A. K. Ismaeel & Diaa Salama AbdElminaam & Sanchari Deb & Mokhtar Said, 2021. "Identification of Parameters in Photovoltaic Models through a Runge Kutta Optimizer," Mathematics, MDPI, vol. 9(18), pages 1-22, September.
    20. Choulli, Imade & Elyaqouti, Mustapha & Arjdal, El hanafi & Ben hmamou, Dris & Saadaoui, Driss & Lidaighbi, Souad & Elhammoudy, Abdelfattah & Abazine, Ismail, 2023. "Hybrid optimization based on the analytical approach and the particle swarm optimization algorithm (Ana-PSO) for the extraction of single and double diode models parameters," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:211:y:2018:i:c:p:774-791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.