IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p11091-d651365.html
   My bibliography  Save this article

Combining Value-Focused Thinking and PROMETHEE Techniques for Selecting a Portfolio of Distributed Energy Generation Projects in the Brazilian Electricity Sector

Author

Listed:
  • Mirian Bortoluzzi

    (Department of Management Engineering, Universidade Federal do Mato Grosso do Sul (UFMS), Campus de Nova Andradina, Nova Andradina 79750-000, MS, Brazil
    Programa de Pós-Graduação em Meio Ambiente e Desenvolvimento Regional, Universidade Anhanguera Uniderp, Campo Grande 79070-900, MS, Brazil)

  • Marcelo Furlan

    (Department of Management Engineering, Universidade Federal do Mato Grosso do Sul (UFMS), Campus de Nova Andradina, Nova Andradina 79750-000, MS, Brazil)

  • Simone Geitenes Colombo

    (Department of Management Engineering, Universidade Federal do Mato Grosso do Sul (UFMS), Campus de Nova Andradina, Nova Andradina 79750-000, MS, Brazil
    Programa de Pós-Graduação em Meio Ambiente e Desenvolvimento Regional, Universidade Anhanguera Uniderp, Campo Grande 79070-900, MS, Brazil)

  • Tatiele Martins Amaral

    (Department of Management Engineering, Universidade Federal do Mato Grosso do Sul (UFMS), Campus de Nova Andradina, Nova Andradina 79750-000, MS, Brazil)

  • Celso Correia de Souza

    (Programa de Pós-Graduação em Meio Ambiente e Desenvolvimento Regional, Universidade Anhanguera Uniderp, Campo Grande 79070-900, MS, Brazil
    Programa de Pós-Graduação em Produção e Gestão Ambiental, Universidade Anhanguera Uniderp, Campo Grande 79070-900, MS, Brazil)

  • José Francisco dos Reis Neto

    (Programa de Pós-Graduação em Meio Ambiente e Desenvolvimento Regional, Universidade Anhanguera Uniderp, Campo Grande 79070-900, MS, Brazil
    Programa de Pós-Graduação em Produção e Gestão Ambiental, Universidade Anhanguera Uniderp, Campo Grande 79070-900, MS, Brazil)

  • Josimar Fernandes de França

    (Programa de Pós-Graduação em Produção e Gestão Ambiental, Universidade Anhanguera Uniderp, Campo Grande 79070-900, MS, Brazil)

Abstract

This article aims to propose a multi-criteria model to support decision-making from a portfolio in selecting technologies for Distributed Generation of Energy (DGE) projects based on the characteristics of the geographic space in Brazil. The decision model involves using multi-criteria to support the evaluation, prioritization, and selection of projects under a multistage decision-making process that fits into a strategic management cycle within the energy sector of Mato Grosso do Sul (Brazil). The over-classification techniques Preference Ranking Organization Technique for Enrichment Evaluations (PROMETHEE) II and V were applied under the Value-Focused Thinking (VFT) approach, reflecting the decision-maker or manager preferences among several conflicting criteria in the investment context of sustainable distributed energy generation projects. Based on real data, a numerical application is employed to view the steps of this decision model and illustrate the adequacy and effectiveness in practical issues of portfolio management.

Suggested Citation

  • Mirian Bortoluzzi & Marcelo Furlan & Simone Geitenes Colombo & Tatiele Martins Amaral & Celso Correia de Souza & José Francisco dos Reis Neto & Josimar Fernandes de França, 2021. "Combining Value-Focused Thinking and PROMETHEE Techniques for Selecting a Portfolio of Distributed Energy Generation Projects in the Brazilian Electricity Sector," Sustainability, MDPI, vol. 13(19), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:11091-:d:651365
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/11091/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/11091/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jano-Ito, Marco A. & Crawford-Brown, Douglas, 2017. "Investment decisions considering economic, environmental and social factors: An actors' perspective for the electricity sector of Mexico," Energy, Elsevier, vol. 121(C), pages 92-106.
    2. Mirakyan, Atom & Guio, R.D., 2014. "A methodology in innovative support of the integrated energy planning preparation and orientation phase," Energy, Elsevier, vol. 78(C), pages 916-927.
    3. Wu, Yunna & Xu, Chuanbo & Ke, Yiming & Chen, Kaifeng & Sun, Xiaokun, 2018. "An intuitionistic fuzzy multi-criteria framework for large-scale rooftop PV project portfolio selection: Case study in Zhejiang, China," Energy, Elsevier, vol. 143(C), pages 295-309.
    4. Büyüközkan, Gülçin & Karabulut, Yağmur, 2017. "Energy project performance evaluation with sustainability perspective," Energy, Elsevier, vol. 119(C), pages 549-560.
    5. Aquila, Giancarlo & Pamplona, Edson de Oliveira & Queiroz, Anderson Rodrigo de & Rotela Junior, Paulo & Fonseca, Marcelo Nunes, 2017. "An overview of incentive policies for the expansion of renewable energy generation in electricity power systems and the Brazilian experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1090-1098.
    6. Bortoluzzi, Mirian & Correia de Souza, Celso & Furlan, Marcelo, 2021. "Bibliometric analysis of renewable energy types using key performance indicators and multicriteria decision models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Jay Simon & Eva Regnier & Laura Whitney, 2014. "A Value-Focused Approach to Energy Transformation in the United States Department of Defense," Decision Analysis, INFORMS, vol. 11(2), pages 117-132, June.
    8. Bertrand Mareschal & Jean Pierre Brans, 1992. "PROMETHEE V: MCDM problems with segmentation constraints," ULB Institutional Repository 2013/9341, ULB -- Universite Libre de Bruxelles.
    9. Fan, Xiao-chao & Wang, Wei-qing & Shi, Rui-jing & Li, Feng-ting, 2015. "Analysis and countermeasures of wind power curtailment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1429-1436.
    10. Hernandez-Perdomo, Elvis A. & Mun, Johnathan & Rocco S., Claudio M., 2017. "Active management in state-owned energy companies: Integrating a real options approach into multicriteria analysis to make companies sustainable," Applied Energy, Elsevier, vol. 195(C), pages 487-502.
    11. Ávila, Leandro & Mine, Miriam R.M & Kaviski, Eloy & Detzel, Daniel H.M., 2021. "Evaluation of hydro-wind complementarity in the medium-term planning of electrical power systems by joint simulation of periodic streamflow and wind speed time series: A Brazilian case study," Renewable Energy, Elsevier, vol. 167(C), pages 685-699.
    12. de Melo, Conrado Augustus & Jannuzzi, Gilberto de Martino & Bajay, Sergio Valdir, 2016. "Nonconventional renewable energy governance in Brazil: Lessons to learn from the German experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 222-234.
    13. Paul L. Ewing & William Tarantino & Gregory S. Parnell, 2006. "Use of Decision Analysis in the Army Base Realignment and Closure (BRAC) 2005 Military Value Analysis," Decision Analysis, INFORMS, vol. 3(1), pages 33-49, March.
    14. Keeney, Ralph L., 1996. "Value-focused thinking: Identifying decision opportunities and creating alternatives," European Journal of Operational Research, Elsevier, vol. 92(3), pages 537-549, August.
    15. Wu, Yunna & Xu, Chuanbo & Ke, Yiming & Li, Xinying & Li, Lingwenying, 2019. "Portfolio selection of distributed energy generation projects considering uncertainty and project interaction under different enterprise strategic scenarios," Applied Energy, Elsevier, vol. 236(C), pages 444-464.
    16. Aragonés-Beltrán, Pablo & Chaparro-González, Fidel & Pastor-Ferrando, Juan-Pascual & Pla-Rubio, Andrea, 2014. "An AHP (Analytic Hierarchy Process)/ANP (Analytic Network Process)-based multi-criteria decision approach for the selection of solar-thermal power plant investment projects," Energy, Elsevier, vol. 66(C), pages 222-238.
    17. Di Santo, Katia Gregio & Kanashiro, Eduardo & Di Santo, Silvio Giuseppe & Saidel, Marco Antonio, 2015. "A review on smart grids and experiences in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1072-1082.
    18. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    19. Mastorakis, Kostis & Siskos, Eleftherios, 2016. "Value focused pharmaceutical strategy determination with multicriteria decision analysis techniques," Omega, Elsevier, vol. 59(PA), pages 84-96.
    20. Hassanzadeh, Farhad & Nemati, Hamid & Sun, Minghe, 2014. "Robust optimization for interactive multiobjective programming with imprecise information applied to R&D project portfolio selection," European Journal of Operational Research, Elsevier, vol. 238(1), pages 41-53.
    21. Hermano Bernardo & Adélio Gaspar & Carlos Henggeler Antunes, 2018. "A Combined Value Focused Thinking-Soft Systems Methodology Approach to Structure Decision Support for Energy Performance Assessment of School Buildings," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    22. Florent MCISAAC & Daniel BASTIDAS, 2019. "Reaching Brazil's Nationally Determined Contributions: An Assessment of the Key Transitions in Final Demand and Employment," Working Paper 911644f9-625d-496f-8ecf-8, Agence française de développement.
    23. Animesh Debnath & Jagannath Roy & Samarjit Kar & Edmundas Kazimieras Zavadskas & Jurgita Antucheviciene, 2017. "A Hybrid MCDM Approach for Strategic Project Portfolio Selection of Agro By-Products," Sustainability, MDPI, vol. 9(8), pages 1-33, July.
    24. Corrêa da Silva, Rodrigo & de Marchi Neto, Ismael & Silva Seifert, Stephan, 2016. "Electricity supply security and the future role of renewable energy sources in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 328-341.
    25. Cuoghi, Kaio Guilherme & Leoneti, Alexandre Bevilacqua, 2019. "A group MCDA method for aiding decision-making of complex problems in public sector: The case of Belo Monte Dam," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    26. Bastidas, Daniel & Mc Isaac, Florent, 2019. "Reaching Brazil's Nationally Determined Contributions: An assessment of the key transitions in final demand and employment," Energy Policy, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bortoluzzi, Mirian & Furlan, Marcelo & dos Reis Neto, José Francisco, 2022. "Assessing the impact of hydropower projects in Brazil through data envelopment analysis and machine learning," Renewable Energy, Elsevier, vol. 200(C), pages 1316-1326.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    2. Wu, Yunna & Xu, Chuanbo & Ke, Yiming & Li, Xinying & Li, Lingwenying, 2019. "Portfolio selection of distributed energy generation projects considering uncertainty and project interaction under different enterprise strategic scenarios," Applied Energy, Elsevier, vol. 236(C), pages 444-464.
    3. Tim H¨ofer & Rüdiger von Nitzsch & Reinhard Madlener, 2020. "Using Value-Focused Thinking and Multicriteria Decision Making to Evaluate Energy Transition Alternatives," Decision Analysis, INFORMS, vol. 17(4), pages 330-355, December.
    4. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    5. Fahime Lotfian Delouyi & Seyed Hassan Ghodsypour & Maryam Ashrafi, 2021. "Dynamic Portfolio Selection in Gas Transmission Projects Considering Sustainable Strategic Alignment and Project Interdependencies through Value Analysis," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    6. Aquila, Giancarlo & Nakamura, Wilson Toshiro & Junior, Paulo Rotella & Souza Rocha, Luiz Celio & de Oliveira Pamplona, Edson, 2021. "Perspectives under uncertainties and risk in wind farms investments based on Omega-LCOE approach: An analysis in São Paulo state, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Simsek, Yeliz & Watts, David & Escobar, Rodrigo, 2018. "Sustainability evaluation of Concentrated Solar Power (CSP) projects under Clean Development Mechanism (CDM) by using Multi Criteria Decision Method (MCDM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 421-438.
    8. Qian, Xiaohu & Fang, Shu-Cherng & Huang, Min & Wang, Xingwei, 2019. "Winner determination of loss-averse buyers with incomplete information in multiattribute reverse auctions for clean energy device procurement," Energy, Elsevier, vol. 177(C), pages 276-292.
    9. Cahen-Fourot, Louison & Campiglio, Emanuele & Godin, Antoine & Kemp-Benedict, Eric & Trsek, Stefan, 2021. "Capital stranding cascades: The impact of decarbonisation on productive asset utilisation," Energy Economics, Elsevier, vol. 103(C).
    10. Yi, Liqi & Li, Tao & Zhang, Ting, 2021. "Optimal investment selection of regional integrated energy system under multiple strategic objectives portfolio," Energy, Elsevier, vol. 218(C).
    11. Dimitrios Gouglas & Kendall Hoyt & Elizabeth Peacocke & Aristidis Kaloudis & Trygve Ottersen & John-Arne Røttingen, 2019. "Setting Strategic Objectives for the Coalition for Epidemic Preparedness Innovations: An Exploratory Decision Analysis Process," Service Science, INFORMS, vol. 49(6), pages 430-446, November.
    12. Chia-Nan Wang & Hector Tibo & Duy Hung Duong, 2020. "Renewable Energy Utilization Analysis of Highly and Newly Industrialized Countries Using an Undesirable Output Model," Energies, MDPI, vol. 13(10), pages 1-21, May.
    13. Fang, Hong & Wang, Xu & Song, Wenyan, 2020. "Technology selection for photovoltaic cell from sustainability perspective: An integrated approach," Renewable Energy, Elsevier, vol. 153(C), pages 1029-1041.
    14. Rego, Erik Eduardo & Costa, Oswaldo L.V. & Ribeiro, Celma de Oliveira & Lima Filho, Roberto Ivo da R. & Takada, Hellinton & Stern, Julio, 2020. "The trade-off between demand growth and renewables: A multiperiod electricity planning model under CO2 emission constraints," Energy, Elsevier, vol. 213(C).
    15. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    16. Magacho, Guilherme & Espagne, Etienne & Godin, Antoine & Mantes, Achilleas & Yilmaz, Devrim, 2023. "Macroeconomic exposure of developing economies to low-carbon transition," World Development, Elsevier, vol. 167(C).
    17. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    18. Carvalho, N.B. & Berrêdo Viana, D. & Muylaert de Araújo, M.S. & Lampreia, J. & Gomes, M.S.P. & Freitas, M.A.V., 2020. "How likely is Brazil to achieve its NDC commitments in the energy sector? A review on Brazilian low-carbon energy perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    19. Rekha Guchhait & Biswajit Sarkar, 2023. "Increasing Growth of Renewable Energy: A State of Art," Energies, MDPI, vol. 16(6), pages 1-29, March.
    20. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:11091-:d:651365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.