IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i7p2295-d155893.html
   My bibliography  Save this article

A Combined Value Focused Thinking-Soft Systems Methodology Approach to Structure Decision Support for Energy Performance Assessment of School Buildings

Author

Listed:
  • Hermano Bernardo

    (INESC Coimbra, Department of Electrical and Computer Engineering, Polo II, University of Coimbra, 3030-290 Coimbra, Portugal)

  • Adélio Gaspar

    (ADAI, LAETA, Department of Mechanical Engineering, Polo II, University of Coimbra, 3030-788 Coimbra, Portugal)

  • Carlos Henggeler Antunes

    (INESC Coimbra, Department of Electrical and Computer Engineering, Polo II, University of Coimbra, 3030-290 Coimbra, Portugal)

Abstract

Several technological, social and organizational factors influence energy management in school buildings, resulting in a complex situation away from the usual engineering approach. The selection of evaluation criteria to assess the energy performance of school buildings remains one of the most challenging aspects since these should accommodate the perspectives of the potential key stakeholders. This paper presents a comprehensive problem structuring approach combining Soft Systems Methodology and Value Focused Thinking to elicit and organize the multiple aspects that influence energy efficiency of school buildings. The main aim of this work is structuring the fundamental objectives to develop a criteria tree to be considered in a multi-criteria classification model to be used by management entities for rating overall energy performance of school buildings. This methodological framework helped grasping the main issues at stake for a thorough energy performance assessment of school buildings and the need to define adequate policies for improvement.

Suggested Citation

  • Hermano Bernardo & Adélio Gaspar & Carlos Henggeler Antunes, 2018. "A Combined Value Focused Thinking-Soft Systems Methodology Approach to Structure Decision Support for Energy Performance Assessment of School Buildings," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2295-:d:155893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/7/2295/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/7/2295/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    2. L M P Neves & A G Martins & C H Antunes & L C Dias, 2004. "Using SSM to rethink the analysis of energy efficiency initiatives," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 968-975, September.
    3. Valerie Belton & Theodor Stewart, 2010. "Problem Structuring and Multiple Criteria Decision Analysis," International Series in Operations Research & Management Science, in: Matthias Ehrgott & José Rui Figueira & Salvatore Greco (ed.), Trends in Multiple Criteria Decision Analysis, chapter 0, pages 209-239, Springer.
    4. Liane Thuvander & Paula Femenías & Kristina Mjörnell & Pär Meiling, 2012. "Unveiling the Process of Sustainable Renovation," Sustainability, MDPI, vol. 4(6), pages 1-26, June.
    5. Georgiou, Ion, 2008. "Making decisions in the absence of clear facts," European Journal of Operational Research, Elsevier, vol. 185(1), pages 299-321, February.
    6. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "The macro-economic rebound effect and the UK economy," Energy Policy, Elsevier, vol. 35(10), pages 4935-4946, October.
    7. Åsa Wahlström & Björn Berggren & Josefin Florell & Rickard Nygren & Thomas Sundén, 2016. "Decision Making Process for Constructing Low-Energy Buildings in the Public Housing Sector in Sweden," Sustainability, MDPI, vol. 8(10), pages 1-20, October.
    8. Mingers, John & White, Leroy, 2010. "A review of the recent contribution of systems thinking to operational research and management science," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1147-1161, December.
    9. Mingers, John & Rosenhead, Jonathan, 2004. "Problem structuring methods in action," European Journal of Operational Research, Elsevier, vol. 152(3), pages 530-554, February.
    10. Ürge-Vorsatz, Diana & Kelemen, Agnes & Tirado-Herrero, Sergio & Thomas, Stefan & Thema, Johannes & Mzavanadze, Nora & Hauptstock, Dorothea & Suerkemper, Felix & Teubler, Jens & Gupta, Mukesh & Chatter, 2016. "Measuring multiple impacts of low-carbon energy options in a green economy context," Applied Energy, Elsevier, vol. 179(C), pages 1409-1426.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre de A. Gomes Júnior & Vanessa B. Schramm, 2022. "Problem Structuring Methods: A Review of Advances Over the Last Decade," Systemic Practice and Action Research, Springer, vol. 35(1), pages 55-88, February.
    2. Tim H¨ofer & Rüdiger von Nitzsch & Reinhard Madlener, 2020. "Using Value-Focused Thinking and Multicriteria Decision Making to Evaluate Energy Transition Alternatives," Decision Analysis, INFORMS, vol. 17(4), pages 330-355, December.
    3. Mirian Bortoluzzi & Marcelo Furlan & Simone Geitenes Colombo & Tatiele Martins Amaral & Celso Correia de Souza & José Francisco dos Reis Neto & Josimar Fernandes de França, 2021. "Combining Value-Focused Thinking and PROMETHEE Techniques for Selecting a Portfolio of Distributed Energy Generation Projects in the Brazilian Electricity Sector," Sustainability, MDPI, vol. 13(19), pages 1-19, October.
    4. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2021. "Energy Effectiveness or Economic Profitability? A Case Study of Thermal Modernization of a School Building," Energies, MDPI, vol. 14(7), pages 1-21, April.
    5. Killemsetty, Namesh & Johnson, Michael & Patel, Amit, 2022. "Understanding housing preferences of slum dwellers in India: A community-based operations research approach," European Journal of Operational Research, Elsevier, vol. 298(2), pages 699-713.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Payam Hanafizadeh & Mohammad Mehrabioun, 2018. "Application of SSM in tackling problematical situations from academicians’ viewpoints," Systemic Practice and Action Research, Springer, vol. 31(2), pages 179-220, April.
    2. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    3. Benedetto, Graziella & Rugani, Benedetto & Vázquez-Rowe, Ian, 2014. "Rebound effects due to economic choices when assessing the environmental sustainability of wine," Food Policy, Elsevier, vol. 49(P1), pages 167-173.
    4. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    5. Maria Franca Norese & Diana Rolando & Rocco Curto, 2023. "DIKEDOC: a multicriteria methodology to organise and communicate knowledge," Annals of Operations Research, Springer, vol. 325(2), pages 1049-1082, June.
    6. Trutnevyte, Evelina & Stauffacher, Michael & Scholz, Roland W., 2012. "Linking stakeholder visions with resource allocation scenarios and multi-criteria assessment," European Journal of Operational Research, Elsevier, vol. 219(3), pages 762-772.
    7. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    8. Jeroen Bergh, 2011. "Energy Conservation More Effective With Rebound Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 43-58, January.
    9. Ya Li & Zhichang Zhu & Catherine M. Gerard, 2012. "Learning from Conflict Resolution: An Opportunity to Systems Thinking," Systems Research and Behavioral Science, Wiley Blackwell, vol. 29(2), pages 209-220, March.
    10. Wang, H. & Zhou, P. & Zhou, D.Q., 2012. "An empirical study of direct rebound effect for passenger transport in urban China," Energy Economics, Elsevier, vol. 34(2), pages 452-460.
    11. Scholz, Roland W. & Czichos, Reiner & Parycek, Peter & Lampoltshammer, Thomas J., 2020. "Organizational vulnerability of digital threats: A first validation of an assessment method," European Journal of Operational Research, Elsevier, vol. 282(2), pages 627-643.
    12. Isabella M. Lami & Stefano Moroni, 2020. "How Can I Help You? Questioning the Role of Evaluation Techniques in Democratic Decision-Making Processes," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    13. Alexandre de A. Gomes Júnior & Vanessa B. Schramm & Fernando Schramm, 2023. "Problem Structuring Methods in Social-Ecological Systems," Systemic Practice and Action Research, Springer, vol. 36(3), pages 461-478, June.
    14. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina & Orioli, Aldo, 2013. "The role of the building sector for reducing energy consumption and greenhouse gases: An Italian case study," Renewable Energy, Elsevier, vol. 60(C), pages 586-597.
    15. Michnik, Jerzy, 2013. "Weighted Influence Non-linear Gauge System (WINGS) – An analysis method for the systems of interrelated components," European Journal of Operational Research, Elsevier, vol. 228(3), pages 536-544.
    16. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Chang, Juin-Jen & Wang, Wei-Neng & Shieh, Jhy-Yuan, 2018. "Environmental rebounds/backfires: Macroeconomic implications for the promotion of environmentally-friendly products," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 35-68.
    18. Espinosa, Angela & Reficco, Ezequiel & Martínez, Andrea & Guzmán, David, 2015. "A methodology for supporting strategy implementation based on the VSM: A case study in a Latin-American multi-national," European Journal of Operational Research, Elsevier, vol. 240(1), pages 202-212.
    19. Lee, Hwarang & Kang, Sung Won & Koo, Yoonmo, 2020. "A hybrid energy system model to evaluate the impact of climate policy on the manufacturing sector: Adoption of energy-efficient technologies and rebound effects," Energy, Elsevier, vol. 212(C).
    20. Fullerton, Don & Ta, Chi L., 2020. "Costs of energy efficiency mandates can reverse the sign of rebound," Journal of Public Economics, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2295-:d:155893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.