IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v52y2015icp1072-1082.html
   My bibliography  Save this article

A review on smart grids and experiences in Brazil

Author

Listed:
  • Di Santo, Katia Gregio
  • Kanashiro, Eduardo
  • Di Santo, Silvio Giuseppe
  • Saidel, Marco Antonio

Abstract

The paper presents a literature review on smart grid concepts, considering generation, transmission and distribution of electricity besides smart consumption, including smart home, Demand-Side Response Programs, and Active Demand-Side Management. An analysis of the smart grid development in Brazil is performed, presenting the policy and regulation efforts beyond investments. This analysis takes account a pattern for smart grid development, and one may observe that Brazil is going towards a smart grid full implementation; however it could take decades and requires adjusts from govern, regulatory agency, utilities and consumers, and more investments. Moreover, some of the major smart grid projects in Brazil are presented, and their characteristics are compared considering the technologies used, location and electric utility goals. Depending on the electric utilities objectives, one may observe similarities and differences between concepts adopted and location of the Brazilian smart grid pilot projects. The first objective is the validation and replicability of the pilot project implemented; once, the project location is a sample of the utility׳s energy market or it is a particular area of interest, like an off-grid powered island with high environmental restrictions, for instance. The second objective is creating a model of sustainable smart grid with national visibility, once the project location is a touristic place. The conception of smart grid is aligned with sustainability, and it is a tendency in Brazil a massive entry of smart grid technologies in the next years.

Suggested Citation

  • Di Santo, Katia Gregio & Kanashiro, Eduardo & Di Santo, Silvio Giuseppe & Saidel, Marco Antonio, 2015. "A review on smart grids and experiences in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1072-1082.
  • Handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1072-1082
    DOI: 10.1016/j.rser.2015.07.182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115008291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.07.182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xi, Jiaqi & Li, Mian & Xu, Min, 2014. "Optimal energy management strategy for battery powered electric vehicles," Applied Energy, Elsevier, vol. 134(C), pages 332-341.
    2. Galo, Joaquim J.M. & Macedo, Maria N.Q. & Almeida, Luiz A.L. & Lima, Antonio C.C., 2014. "Criteria for smart grid deployment in Brazil by applying the Delphi method," Energy, Elsevier, vol. 70(C), pages 605-611.
    3. Fadaeenejad, M. & Saberian, A.M. & Fadaee, Mohd. & Radzi, M.A.M. & Hizam, H. & AbKadir, M.Z.A., 2014. "The present and future of smart power grid in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 828-834.
    4. Bhatt, Jignesh & Shah, Vipul & Jani, Omkar, 2014. "An instrumentation engineer’s review on smart grid: Critical applications and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1217-1239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    2. Hussain, Akhtar & Bui, Van-Hai & Kim, Hak-Man, 2019. "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience," Applied Energy, Elsevier, vol. 240(C), pages 56-72.
    3. Mirian Bortoluzzi & Marcelo Furlan & Simone Geitenes Colombo & Tatiele Martins Amaral & Celso Correia de Souza & José Francisco dos Reis Neto & Josimar Fernandes de França, 2021. "Combining Value-Focused Thinking and PROMETHEE Techniques for Selecting a Portfolio of Distributed Energy Generation Projects in the Brazilian Electricity Sector," Sustainability, MDPI, vol. 13(19), pages 1-19, October.
    4. Dranka, Géremi Gilson & Ferreira, Paula, 2020. "Towards a smart grid power system in Brazil: Challenges and opportunities," Energy Policy, Elsevier, vol. 136(C).
    5. Dranka, Géremi Gilson & Ferreira, Paula, 2020. "Load flexibility potential across residential, commercial and industrial sectors in Brazil," Energy, Elsevier, vol. 201(C).
    6. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    7. Cerna, Fernando V. & Pourakbari-Kasmaei, Mahdi & Barros, Raone G. & Naderi, Ehsan & Lehtonen, Matti & Contreras, Javier, 2023. "Optimal operating scheme of neighborhood energy storage communities to improve power grid performance in smart cities," Applied Energy, Elsevier, vol. 331(C).
    8. Ellabban, Omar & Abu-Rub, Haitham, 2016. "Smart grid customers' acceptance and engagement: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1285-1298.
    9. Fabienne T. Schiavo & Rodrigo F. Calili & Claudio F. de Magalhães & Isabel C. G. Fróes, 2021. "The Meaning of Electric Cars in the Context of Sustainable Transition in Brazil," Sustainability, MDPI, vol. 13(19), pages 1-24, October.
    10. Fossati, Michele & Scalco, Veridiana Atanasio & Linczuk, Vinícius Cesar Cadena & Lamberts, Roberto, 2016. "Building energy efficiency: An overview of the Brazilian residential labeling scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1216-1231.
    11. Asaad, Mohammad & Ahmad, Furkan & Alam, Mohammad Saad & Sarfraz, Mohammad, 2021. "Smart grid and Indian experience: A review," Resources Policy, Elsevier, vol. 74(C).
    12. Lukas Sigrist & Kristof May & Andrei Morch & Peter Verboven & Pieter Vingerhoets & Luis Rouco, 2016. "On Scalability and Replicability of Smart Grid Projects—A Case Study," Energies, MDPI, vol. 9(3), pages 1-19, March.
    13. Farrelly, M.A. & Tawfik, S., 2020. "Engaging in disruption: A review of emerging microgrids in Victoria, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    14. Colak, Ilhami & Sagiroglu, Seref & Fulli, Gianluca & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2016. "A survey on the critical issues in smart grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 396-405.
    15. Lee Won Park & Sanghoon Lee & Hangbae Chang, 2018. "A Sustainable Home Energy Prosumer-Chain Methodology with Energy Tags over the Blockchain," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    16. Fettermann, Diego Castro & Cavalcante, Caroline Gobbo Sá & Ayala, Néstor Fabián & Avalone, Marianne Costa, 2020. "Configuration of a smart meter for Brazilian customers," Energy Policy, Elsevier, vol. 139(C).
    17. Zhang, Yao & Chen, Wei & Gao, Weijun, 2017. "A survey on the development status and challenges of smart grids in main driver countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 137-147.
    18. Gjorgievski, Vladimir Z. & Markovska, Natasa & Abazi, Alajdin & Duić, Neven, 2021. "The potential of power-to-heat demand response to improve the flexibility of the energy system: An empirical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Chou, Jui-Sheng & Ngo, Ngoc-Tri, 2016. "Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns," Applied Energy, Elsevier, vol. 177(C), pages 751-770.
    20. Younesi, Abdollah & Shayeghi, Hossein & Wang, Zongjie & Siano, Pierluigi & Mehrizi-Sani, Ali & Safari, Amin, 2022. "Trends in modern power systems resilience: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dantas, Guilherme de A. & de Castro, Nivalde J. & Brandão, Roberto & Rosental, Rubens & Lafranque, Alexandre, 2017. "Prospects for the Brazilian electricity sector in the 2030s: Scenarios and guidelines for its transformation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 997-1007.
    2. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    3. Quitzow, Rainer & Thielges, Sonja & Goldthau, Andreas & Helgenberger, Sebastian & Mbungu, Grace, 2019. "Advancing a global transition to clean energy: The role of international cooperation," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 13, pages 1-18.
    4. Wang, H., 2015. "A generalized MCDA–DEA (multi-criterion decision analysis–data envelopment analysis) approach to construct slacks-based composite indicator," Energy, Elsevier, vol. 80(C), pages 114-122.
    5. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    6. Colak, Ilhami & Kabalci, Ersan & Fulli, Gianluca & Lazarou, Stavros, 2015. "A survey on the contributions of power electronics to smart grid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 562-579.
    7. Fettermann, Diego Castro & Cavalcante, Caroline Gobbo Sá & Ayala, Néstor Fabián & Avalone, Marianne Costa, 2020. "Configuration of a smart meter for Brazilian customers," Energy Policy, Elsevier, vol. 139(C).
    8. Ellabban, Omar & Abu-Rub, Haitham, 2016. "Smart grid customers' acceptance and engagement: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1285-1298.
    9. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    10. Yin Hua & Min Xu & Mian Li & Chengbin Ma & Chen Zhao, 2015. "Estimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles," Energies, MDPI, vol. 8(5), pages 1-22, April.
    11. Lv, Tianguang & Ai, Qian, 2016. "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, Elsevier, vol. 163(C), pages 408-422.
    12. Hu, Xiao & Wang, Ping & Hu, Yunfeng & Chen, Hong, 2020. "A stability-guaranteed and energy-conserving torque distribution strategy for electric vehicles under extreme conditions," Applied Energy, Elsevier, vol. 259(C).
    13. Guillermo Ivan Pereira & Patrícia Pereira Silva & Deborah Soule, 2018. "Policy-adaptation for a smarter and more sustainable EU electricity distribution industry: a foresight analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 231-267, December.
    14. Yang, Lin & Cai, Yishan & Yang, Yixin & Deng, Zhongwei, 2020. "Supervisory long-term prediction of state of available power for lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 257(C).
    15. Liu, Bo & Sun, Chao & Wang, Bo & Liang, Weiqiang & Ren, Qiang & Li, Junqiu & Sun, Fengchun, 2022. "Bi-level convex optimization of eco-driving for connected Fuel Cell Hybrid Electric Vehicles through signalized intersections," Energy, Elsevier, vol. 252(C).
    16. Truong, D.Q. & Marco, J. & Greenwood, D. & Harper, L. & Corrochano, D.G. & Yoon, J.I., 2018. "Challenges of micro/mild hybridisation for construction machinery and applicability in UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 301-320.
    17. Abdi, Hamdi & Beigvand, Soheil Derafshi & Scala, Massimo La, 2017. "A review of optimal power flow studies applied to smart grids and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 742-766.
    18. Elena Arce, María & Saavedra, Ángeles & Míguez, José L. & Granada, Enrique, 2015. "The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 924-932.
    19. Ghazal, Mohammed & Akmal, Muhammad & Iyanna, Shilpa & Ghoudi, Kilani, 2016. "Smart plugs: Perceived usefulness and satisfaction: Evidence from United Arab Emirates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1248-1259.
    20. Zhou, Kaile & Yang, Shanlin & Chen, Zhiqiang & Ding, Shuai, 2014. "Optimal load distribution model of microgrid in the smart grid environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 304-310.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1072-1082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.