IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10173-d633530.html
   My bibliography  Save this article

A Two-Stage Optimal Dispatching Model for Micro Energy Grid Considering the Dual Goals of Economy and Environmental Protection under CVaR

Author

Listed:
  • Jun Dong

    (Department of Economic Management, North China Electric Power University, Beijing 102206, China)

  • Yaoyu Zhang

    (Department of Economic Management, North China Electric Power University, Beijing 102206, China)

  • Yuanyuan Wang

    (Department of Economic Management, North China Electric Power University, Beijing 102206, China)

  • Yao Liu

    (Department of Economic Management, North China Electric Power University, Beijing 102206, China)

Abstract

With the development of distributed renewable energy, a micro-energy grid (MEG) is an important way to solve the problem of energy supply in the future. A two-stage optimal scheduling model considering economy and environmental protection is proposed to solve the problem of optimal scheduling of micro-energy grid with high proportion of renewable energy system (RES) and multiple energy storage systems (ESS), in which the risk is measured by conditional value-at-risk (CVaR). The results show that (a) this model can realize the optimal power of various energy equipment, promote the consumption of renewable energy, and the optimal operating cost of the system is 34873 USD. (b) The dispatch of generating units is different under different risk coefficients λ , which leads to different dispatch cost and risk cost, and the two costs cannot be optimal at the same time. The risk coefficient λ shall be determined according to the degree of risk preference of the decision-maker. (c) The proposed optimal model could balance economic objectives and environmental objectives, and rationally control its pollutant emission level while pursuing the minimum operation costs. Therefore, the proposed model can not only reduce the operation cost based on the consideration of system carbon emissions but also provide decision-makers with decision-making support by measuring the risk.

Suggested Citation

  • Jun Dong & Yaoyu Zhang & Yuanyuan Wang & Yao Liu, 2021. "A Two-Stage Optimal Dispatching Model for Micro Energy Grid Considering the Dual Goals of Economy and Environmental Protection under CVaR," Sustainability, MDPI, vol. 13(18), pages 1-28, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10173-:d:633530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10173/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10173/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Jun & Su, Changqi, 2021. "Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty," Energy, Elsevier, vol. 223(C).
    2. Zhang, Kai & Li, Jingzhi & He, Zhubin & Yan, Wanfeng, 2018. "Microgrid energy dispatching for industrial zones with renewable generations and electric vehicles via stochastic optimization and learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 356-369.
    3. Mazidi, Mohammadreza & Rezaei, Navid & Ghaderi, Abdolsalam, 2019. "Simultaneous power and heat scheduling of microgrids considering operational uncertainties: A new stochastic p-robust optimization approach," Energy, Elsevier, vol. 185(C), pages 239-253.
    4. Mah, Angel Xin Yee & Ho, Wai Shin & Hassim, Mimi H. & Hashim, Haslenda & Ling, Gabriel Hoh Teck & Ho, Chin Siong & Muis, Zarina Ab, 2021. "Optimization of photovoltaic-based microgrid with hybrid energy storage: A P-graph approach," Energy, Elsevier, vol. 233(C).
    5. Fatin Ishraque, Md. & Shezan, Sk. A. & Ali, M.M. & Rashid, M.M., 2021. "Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources," Applied Energy, Elsevier, vol. 292(C).
    6. Chen, Liyuan & Zerilli, Paola & Baum, Christopher F., 2019. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Energy Economics, Elsevier, vol. 79(C), pages 111-129.
    7. Jun Dong & Anyuan Fu & Yao Liu & Shilin Nie & Peiwen Yang & Linpeng Nie, 2019. "Two-Stage Optimization Model for Two-Side Daily Reserve Capacity of a Power System Considering Demand Response and Wind Power Consumption," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    8. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.
    9. Mo, Qiu & Liu, Fang, 2020. "Modeling and optimization for distributed microgrid based on Modelica language," Applied Energy, Elsevier, vol. 279(C).
    10. Dagar, Annu & Gupta, Pankaj & Niranjan, Vandana, 2021. "Microgrid protection: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Shiping Geng & Gengqi Wu & Caixia Tan & Dongxiao Niu & Xiaopeng Guo, 2021. "Multi-Objective Optimization of a Microgrid Considering the Uncertainty of Supply and Demand," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    12. Wang, Luhao & Li, Qiqiang & Ding, Ran & Sun, Mingshun & Wang, Guirong, 2017. "Integrated scheduling of energy supply and demand in microgrids under uncertainty: A robust multi-objective optimization approach," Energy, Elsevier, vol. 130(C), pages 1-14.
    13. Li, Yanbin & Zhang, Feng & Li, Yun & Wang, Yuwei, 2021. "An improved two-stage robust optimization model for CCHP-P2G microgrid system considering multi-energy operation under wind power outputs uncertainties," Energy, Elsevier, vol. 223(C).
    14. Zhu, Ziqing & Wing Chan, Ka & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2021. "Real-Time interaction of active distribution network and virtual microgrids: Market paradigm and data-driven stakeholder behavior analysis," Applied Energy, Elsevier, vol. 297(C).
    15. Rezaei, Navid & Khazali, Amirhossein & Mazidi, Mohammadreza & Ahmadi, Abdollah, 2020. "Economic energy and reserve management of renewable-based microgrids in the presence of electric vehicle aggregators: A robust optimization approach," Energy, Elsevier, vol. 201(C).
    16. Ghasemi, Ahmad & Jamshidi Monfared, Houman & Loni, Abdolah & Marzband, Mousa, 2021. "CVaR-based retail electricity pricing in day-ahead scheduling of microgrids," Energy, Elsevier, vol. 227(C).
    17. Jing Wu & Zhongfu Tan & Keke Wang & Yi Liang & Jinghan Zhou, 2021. "Research on Multi-Objective Optimization Model for Hybrid Energy System Considering Combination of Wind Power and Energy Storage," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    18. Jun Dong & Yuanyuan Wang & Xihao Dou & Zhengpeng Chen & Yaoyu Zhang & Yao Liu, 2021. "Research on Decision Optimization Model of Microgrid Participating in Spot Market Transaction," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hang Liu & Yongcheng Wang & Shilin Nie & Yi Wang & Yu Chen, 2022. "Multistage Economic Scheduling Model of Micro-Energy Grids Considering Flexible Capacity Allocation," Sustainability, MDPI, vol. 14(15), pages 1-29, July.
    2. Tafone, Alessio & Raj Thangavelu, Sundar & Morita, Shigenori & Romagnoli, Alessandro, 2023. "Design optimization of a novel cryo-polygeneration demonstrator developed in Singapore – Techno-economic feasibility study for a cooling dominated tropical climate," Applied Energy, Elsevier, vol. 330(PB).
    3. Lucio Laureti & Alessandro Massaro & Alberto Costantiello & Angelo Leogrande, 2023. "The Impact of Renewable Electricity Output on Sustainability in the Context of Circular Economy: A Global Perspective," Sustainability, MDPI, vol. 15(3), pages 1-29, January.
    4. Morteza Neishaboori & Alireza Arshadi Khamseh & Abolfazl Mirzazadeh & Mostafa Esmaeeli & Hamed Davari Ardakani, 2024. "Stochastic optimal pricing for retail electricity considering demand response, renewable energy sources and environmental effects," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(5), pages 435-451, October.
    5. Shiduo Jia & Xiaoning Kang, 2022. "Multi-Objective Optimal Scheduling of CHP Microgrid Considering Conditional Value-at-Risk," Energies, MDPI, vol. 15(9), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Dong & Yuanyuan Wang & Xihao Dou & Zhengpeng Chen & Yaoyu Zhang & Yao Liu, 2021. "Research on Decision Optimization Model of Microgrid Participating in Spot Market Transaction," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    2. Li, Bei & Li, Jiangchen, 2021. "Probabilistic sizing of a low-carbon emission power system considering HVDC transmission and microgrid clusters," Applied Energy, Elsevier, vol. 304(C).
    3. Yang, Xiaohui & Wang, Xiaopeng & Leng, Zhengyang & Deng, Yeheng & Deng, Fuwei & Zhang, Zhonglian & Yang, Li & Liu, Xiaoping, 2023. "An optimized scheduling strategy combining robust optimization and rolling optimization to solve the uncertainty of RES-CCHP MG," Renewable Energy, Elsevier, vol. 211(C), pages 307-325.
    4. Siqin, Zhuoya & Niu, DongXiao & Wang, Xuejie & Zhen, Hao & Li, MingYu & Wang, Jingbo, 2022. "A two-stage distributionally robust optimization model for P2G-CCHP microgrid considering uncertainty and carbon emission," Energy, Elsevier, vol. 260(C).
    5. Xian Huang & Wentong Ji & Xiaorong Ye & Zhangjie Feng, 2023. "Configuration Planning of Expressway Self-Consistent Energy System Based on Multi-Objective Chance-Constrained Programming," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    6. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    7. Khaligh, Vahid & Ghezelbash, Azam & Mazidi, Mohammadreza & Liu, Jay & Ryu, Jun-Hyung, 2023. "P-robust energy management of a multi-energy microgrid enabled with energy conversions under various uncertainties," Energy, Elsevier, vol. 271(C).
    8. Yanbin Li & Yanting Sun & Junjie Zhang & Feng Zhang, 2022. "Optimal Microgrid System Operating Strategy Considering Variable Wind Power Outputs and the Cooperative Game among Subsystem Operators," Energies, MDPI, vol. 15(18), pages 1-20, September.
    9. Sun, Qie & Fu, Yu & Lin, Haiyang & Wennersten, Ronald, 2022. "A novel integrated stochastic programming-information gap decision theory (IGDT) approach for optimization of integrated energy systems (IESs) with multiple uncertainties," Applied Energy, Elsevier, vol. 314(C).
    10. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    11. Zhao, Huiru & Li, Bingkang & Lu, Hao & Wang, Xuejie & Li, Hongze & Guo, Sen & Xue, Wanlei & Wang, Yuwei, 2022. "Economy-environment-energy performance evaluation of CCHP microgrid system: A hybrid multi-criteria decision-making method," Energy, Elsevier, vol. 240(C).
    12. Kia, M. & Shafiekhani, M. & Arasteh, H. & Hashemi, S.M. & Shafie-khah, M. & Catalão, J.P.S., 2020. "Short-term operation of microgrids with thermal and electrical loads under different uncertainties using information gap decision theory," Energy, Elsevier, vol. 208(C).
    13. Mohammed Kharrich & Salah Kamel & Mohamed H. Hassan & Salah K. ElSayed & Ibrahim B. M. Taha, 2021. "An Improved Heap-Based Optimizer for Optimal Design of a Hybrid Microgrid Considering Reliability and Availability Constraints," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    14. Zhu, Yansong & Liu, Jizhen & Hu, Yong & Xie, Yan & Zeng, Deliang & Li, Ruilian, 2024. "Distributionally robust optimization model considering deep peak shaving and uncertainty of renewable energy," Energy, Elsevier, vol. 288(C).
    15. Md. Fatin Ishraque & Akhlaqur Rahman & Sk. A. Shezan & GM Shafiullah, 2022. "Operation and Assessment of a Microgrid for Maldives: Islanded and Grid-Tied Mode," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    16. Zhou, Xiaoqian & Ai, Qian & Yousif, Muhammad, 2019. "Two kinds of decentralized robust economic dispatch framework combined distribution network and multi-microgrids," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Lei, Yu-Tian & Ma, Chao-Qun & Mirza, Nawazish & Ren, Yi-Shuai & Narayan, Seema Wati & Chen, Xun-Qi, 2022. "A renewable energy microgrids trading management platform based on permissioned blockchain," Energy Economics, Elsevier, vol. 115(C).
    18. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2023. "A framework for quantifying the value of information to mitigate risk in the optimal design of distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 350(C).
    19. Shahbazbegian, Vahid & Shafie-khah, Miadreza & Laaksonen, Hannu & Strbac, Goran & Ameli, Hossein, 2023. "Resilience-oriented operation of microgrids in the presence of power-to-hydrogen systems," Applied Energy, Elsevier, vol. 348(C).
    20. Yang, Jun & Su, Changqi, 2021. "Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10173-:d:633530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.