IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v501y2018icp356-369.html
   My bibliography  Save this article

Microgrid energy dispatching for industrial zones with renewable generations and electric vehicles via stochastic optimization and learning

Author

Listed:
  • Zhang, Kai
  • Li, Jingzhi
  • He, Zhubin
  • Yan, Wanfeng

Abstract

In this paper, a stochastic optimization framework is proposed to address the microgrid energy dispatching problem with random renewable generation and vehicle activity pattern, which is closer to the practical applications. The patterns of energy generation, consumption and storage availability are all random and unknown at the beginning, and the microgrid controller design (MCD) is formulated as a Markov decision process (MDP). Hence, an online learning-based control algorithm is proposed for the microgrid, which could adapt the control policy with increasing knowledge of the system dynamics and converges to the optimal algorithm. We adopt the linear approximation idea to decompose the original value functions as the summation of each per-battery value function. As a consequence, the computational complexity is significantly reduced from exponential growth to linear growth with respect to the size of battery states. Monte Carlo simulation of different scenarios demonstrates the effectiveness and efficiency of our algorithm.

Suggested Citation

  • Zhang, Kai & Li, Jingzhi & He, Zhubin & Yan, Wanfeng, 2018. "Microgrid energy dispatching for industrial zones with renewable generations and electric vehicles via stochastic optimization and learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 356-369.
  • Handle: RePEc:eee:phsmap:v:501:y:2018:i:c:p:356-369
    DOI: 10.1016/j.physa.2018.02.196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118302814
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    2. Wei Gu & Haojun Yu & Wei Liu & Junpeng Zhu & Xiaohui Xu, 2013. "Demand Response and Economic Dispatch of Power Systems Considering Large-Scale Plug-in Hybrid Electric Vehicles/Electric Vehicles (PHEVs/EVs): A Review," Energies, MDPI, vol. 6(9), pages 1-24, August.
    3. Kou, Peng & Gao, Feng & Guan, Xiaohong, 2015. "Stochastic predictive control of battery energy storage for wind farm dispatching: Using probabilistic wind power forecasts," Renewable Energy, Elsevier, vol. 80(C), pages 286-300.
    4. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    5. Petruschke, Philipp & Gasparovic, Goran & Voll, Philip & Krajačić, Goran & Duić, Neven & Bardow, André, 2014. "A hybrid approach for the efficient synthesis of renewable energy systems," Applied Energy, Elsevier, vol. 135(C), pages 625-633.
    6. Pahwa, S. & Youssef, M. & Schumm, P. & Scoglio, C. & Schulz, N., 2013. "Optimal intentional islanding to enhance the robustness of power grid networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3741-3754.
    7. Hastik, Richard & Basso, Stefano & Geitner, Clemens & Haida, Christin & Poljanec, Aleš & Portaccio, Alessia & Vrščaj, Borut & Walzer, Chris, 2015. "Renewable energies and ecosystem service impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 608-623.
    8. Crespo Del Granado, Pedro & Pang, Zhan & Wallace, Stein W., 2016. "Synergy of smart grids and hybrid distributed generation on the value of energy storage," Applied Energy, Elsevier, vol. 170(C), pages 476-488.
    9. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2015. "Smart households: Dispatch strategies and economic analysis of distributed energy storage for residential peak shaving," Applied Energy, Elsevier, vol. 147(C), pages 246-257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    2. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    3. Ruifeng Shi & Shaopeng Li & Changhao Sun & Kwang Y. Lee, 2018. "Adjustable Robust Optimization Algorithm for Residential Microgrid Multi-Dispatch Strategy with Consideration of Wind Power and Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-22, August.
    4. Sepideh Rezaeeian & Narges Bayat & Abbas Rabiee & Saman Nikkhah & Alireza Soroudi, 2022. "Optimal Scheduling of Reconfigurable Microgrids in Both Grid-Connected and Isolated Modes Considering the Uncertainty of DERs," Energies, MDPI, vol. 15(15), pages 1-18, July.
    5. Jun Dong & Yaoyu Zhang & Yuanyuan Wang & Yao Liu, 2021. "A Two-Stage Optimal Dispatching Model for Micro Energy Grid Considering the Dual Goals of Economy and Environmental Protection under CVaR," Sustainability, MDPI, vol. 13(18), pages 1-28, September.
    6. Saif Jamal & Nadia M. L. Tan & Jagadeesh Pasupuleti, 2021. "A Review of Energy Management and Power Management Systems for Microgrid and Nanogrid Applications," Sustainability, MDPI, vol. 13(18), pages 1-31, September.
    7. Huiru Zhao & Hao Lu & Bingkang Li & Xuejie Wang & Shiying Zhang & Yuwei Wang, 2020. "Stochastic Optimization of Microgrid Participating Day-Ahead Market Operation Strategy with Consideration of Energy Storage System and Demand Response," Energies, MDPI, vol. 13(5), pages 1-16, March.
    8. Zhang, Hao & Cai, Guixin, 2020. "Subsidy strategy on new-energy vehicle based on incomplete information: A Case in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Segurado, R. & Madeira, J.F.A. & Costa, M. & Duić, N. & Carvalho, M.G., 2016. "Optimization of a wind powered desalination and pumped hydro storage system," Applied Energy, Elsevier, vol. 177(C), pages 487-499.
    2. Kumar, Rajesh & Agarwala, Arun, 2016. "Renewable energy technology diffusion model for techno-economics feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1515-1524.
    3. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.
    5. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    6. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    7. Fethi Khlifi & Habib Cherif & Jamel Belhadj, 2021. "Environmental and Economic Optimization and Sizing of a Micro-Grid with Battery Storage for an Industrial Application," Energies, MDPI, vol. 14(18), pages 1-17, September.
    8. Zhang, Wei & Zhu, Rui & Liu, Bin & Ramakrishna, Seeram, 2012. "High-performance hybrid solar cells employing metal-free organic dye modified TiO2 as photoelectrode," Applied Energy, Elsevier, vol. 90(1), pages 305-308.
    9. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    10. Martínez-Martínez, Yenisleidy & Dewulf, Jo & Casas-Ledón, Yannay, 2022. "GIS-based site suitability analysis and ecosystem services approach for supporting renewable energy development in south-central Chile," Renewable Energy, Elsevier, vol. 182(C), pages 363-376.
    11. Mwaka I. Juma & Bakari M. M. Mwinyiwiwa & Consalva J. Msigwa & Aviti T. Mushi, 2021. "Design of a Hybrid Energy System with Energy Storage for Standalone DC Microgrid Application," Energies, MDPI, vol. 14(18), pages 1-15, September.
    12. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    13. Yiqi Chu & Chengcai Li & Yefang Wang & Jing Li & Jian Li, 2016. "A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction," Energies, MDPI, vol. 9(11), pages 1-20, October.
    14. Kolasa, Piotr & Janowski, Mirosław, 2017. "Study of possibilities to store energy virtually in a grid (VESS) with the use of smart metering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1513-1517.
    15. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    16. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    17. Baeten, Brecht & Confrey, Thomas & Pecceu, Sébastien & Rogiers, Frederik & Helsen, Lieve, 2016. "A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations," Applied Energy, Elsevier, vol. 172(C), pages 217-229.
    18. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
    19. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    20. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:501:y:2018:i:c:p:356-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.