IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3394-d809667.html
   My bibliography  Save this article

Multi-Objective Optimal Scheduling of CHP Microgrid Considering Conditional Value-at-Risk

Author

Listed:
  • Shiduo Jia

    (Shaanxi Key Laboratory of Smart Grid, Xi’an Jiaotong University, Xi’an 710000, China)

  • Xiaoning Kang

    (Shaanxi Key Laboratory of Smart Grid, Xi’an Jiaotong University, Xi’an 710000, China)

Abstract

A combined heating and power (CHP) microgrid has high flexibility and economy, but the output of renewable energy is uncertain. Meanwhile, excessive flexible load adjustment in the demand response process will increase user dissatisfaction. In order to solve the above problems, this paper quantifies uncertainty with the conditional value-at-risk (CVaR) of relative disturbance. Additionally, a multi-objective optimal scheduling model that takes into account both the operating economy and the demand-side power consumption satisfaction is established. In order to solve the multi-objective mixed-integer nonlinear programming problem well, we propose an improved sparrow search algorithm (ISSA), which solves the problem that the sparrow search algorithm (SSA) is prone to low accuracy, insufficient in population diversity and easy to be trapped in local optimum. Combined with the non-dominated solution ranking method, ISSA has the ability of multi-objective optimization. Finally, simulation on a typical CHP microgrid is performed. The optimization results under different confidence levels and risk preference coefficients are compared and analyzed. When the risk preference coefficient is 0.1, 2 and 5, the minimum rotating reserve capacity is 75.17 kW, 82.83 kW, and 105.70 kW in the electric part and 40.08 kW, 59.89 kW, and 61.94 kW in the thermal part. The effectiveness of the proposed CVaR of relative disturbance is verified.

Suggested Citation

  • Shiduo Jia & Xiaoning Kang, 2022. "Multi-Objective Optimal Scheduling of CHP Microgrid Considering Conditional Value-at-Risk," Energies, MDPI, vol. 15(9), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3394-:d:809667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3394/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3394/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. MansourLakouraj, Mohammad & Shahabi, Majid & Shafie-khah, Miadreza & Ghoreishi, Niloofar & Catalão, João P.S., 2020. "Optimal power management of dependent microgrid considering distribution market and unused power capacity," Energy, Elsevier, vol. 200(C).
    2. Bo Hu & Nan Wang & Zaiming Yu & Yunqing Cao & Dongsheng Yang & Li Sun, 2021. "Optimal Operation of Multiple Energy System Based on Multi-Objective Theory and Grey Theory," Energies, MDPI, vol. 15(1), pages 1-21, December.
    3. Jun Dong & Yaoyu Zhang & Yuanyuan Wang & Yao Liu, 2021. "A Two-Stage Optimal Dispatching Model for Micro Energy Grid Considering the Dual Goals of Economy and Environmental Protection under CVaR," Sustainability, MDPI, vol. 13(18), pages 1-28, September.
    4. Tan, Hong & Yan, Wei & Ren, Zhouyang & Wang, Qiujie & Mohamed, Mohamed A., 2022. "A robust dispatch model for integrated electricity and heat networks considering price-based integrated demand response," Energy, Elsevier, vol. 239(PA).
    5. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    6. Sergio Bruno & Gabriella Dellino & Massimo La Scala & Carlo Meloni, 2019. "A Microforecasting Module for Energy Management in Residential and Tertiary Buildings †," Energies, MDPI, vol. 12(6), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiduo Jia & Xiaoning Kang & Jinxu Cui & Bowen Tian & Shuwen Xiao, 2022. "Hierarchical Stochastic Optimal Scheduling of Electric Thermal Hydrogen Integrated Energy System Considering Electric Vehicles," Energies, MDPI, vol. 15(15), pages 1-23, July.
    2. Seyed Hasan Mirbarati & Najme Heidari & Amirhossein Nikoofard & Mir Sayed Shah Danish & Mahdi Khosravy, 2022. "Techno-Economic-Environmental Energy Management of a Micro-Grid: A Mixed-Integer Linear Programming Approach," Sustainability, MDPI, vol. 14(22), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    2. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    3. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    4. Giovanni Masala & Filippo Petroni, 2023. "Drawdown risk measures for asset portfolios with high frequency data," Annals of Finance, Springer, vol. 19(2), pages 265-289, June.
    5. Ke Zhou & Jiangjun Gao & Duan Li & Xiangyu Cui, 2017. "Dynamic mean–VaR portfolio selection in continuous time," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1631-1643, October.
    6. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    7. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    8. Alois Pichler, 2013. "Premiums And Reserves, Adjusted By Distortions," Papers 1304.0490, arXiv.org.
    9. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2013. "A comparison of the original and revised Basel market risk frameworks for regulating bank capital," Journal of Economic Behavior & Organization, Elsevier, vol. 85(C), pages 249-268.
    10. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    11. David Neděla & Sergio Ortobelli & Tomáš Tichý, 2024. "Mean–variance vs trend–risk portfolio selection," Review of Managerial Science, Springer, vol. 18(7), pages 2047-2078, July.
    12. Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
    13. Li, Bo & Hou, Peng-Wen & Chen, Ping & Li, Qing-Hua, 2016. "Pricing strategy and coordination in a dual channel supply chain with a risk-averse retailer," International Journal of Production Economics, Elsevier, vol. 178(C), pages 154-168.
    14. Jin, Xin & Zhang, Zhaolong & Shi, Xiaoqiang & Ju, Wenbin, 2014. "A review on wind power industry and corresponding insurance market in China: Current status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1069-1082.
    15. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    16. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    17. Mínguez, R. & Conejo, A.J. & García-Bertrand, R., 2011. "Reliability and decomposition techniques to solve certain class of stochastic programming problems," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 314-323.
    18. Fattahi, Mohammad & Keyvanshokooh, Esmaeil & Kannan, Devika & Govindan, Kannan, 2023. "Resource planning strategies for healthcare systems during a pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 192-206.
    19. Jia Liu & Cuixia Li, 2023. "Dynamic Game Analysis on Cooperative Advertising Strategy in a Manufacturer-Led Supply Chain with Risk Aversion," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    20. Nan Zhang & Heng Xu, 2024. "Fairness of Ratemaking for Catastrophe Insurance: Lessons from Machine Learning," Information Systems Research, INFORMS, vol. 35(2), pages 469-488, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3394-:d:809667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.