IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v83y2006i1-2p30-36.html
   My bibliography  Save this article

Comparative effects of drip and furrow irrigation on the yield and water productivity of cotton (Gossypium hirsutum L.) in a saline and waterlogged vertisol

Author

Listed:
  • Rajak, Daleshwar
  • Manjunatha, M.V.
  • Rajkumar, G.R.
  • Hebbara, M.
  • Minhas, P.S.

Abstract

No abstract is available for this item.

Suggested Citation

  • Rajak, Daleshwar & Manjunatha, M.V. & Rajkumar, G.R. & Hebbara, M. & Minhas, P.S., 2006. "Comparative effects of drip and furrow irrigation on the yield and water productivity of cotton (Gossypium hirsutum L.) in a saline and waterlogged vertisol," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 30-36, May.
  • Handle: RePEc:eee:agiwat:v:83:y:2006:i:1-2:p:30-36
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(05)00378-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yohannes, Fekadu & Tadesse, Teshome, 1998. "Effect of drip and furrow irrigation and plant spacing on yield of tomato at Dire Dawa, Ethiopia," Agricultural Water Management, Elsevier, vol. 35(3), pages 201-207, January.
    2. Tiwari, K. N. & Singh, Ajai & Mal, P. K., 2003. "Effect of drip irrigation on yield of cabbage (Brassica oleracea L. var. capitata) under mulch and non-mulch conditions," Agricultural Water Management, Elsevier, vol. 58(1), pages 19-28, January.
    3. Tiwari, K. N. & Mal, P. K. & Singh, R. M. & Chattopadhyay, A., 1998. "Response of okra (Abelmoschus esculentus (L.) Moench.) to drip irrigation under mulch and non-mulch conditions," Agricultural Water Management, Elsevier, vol. 38(2), pages 91-102, December.
    4. Cetin, O. & Bilgel, L., 2002. "Effects of different irrigation methods on shedding and yield of cotton," Agricultural Water Management, Elsevier, vol. 54(1), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    2. Rebecka Törnqvist & Jerker Jarsjö, 2012. "Water Savings Through Improved Irrigation Techniques: Basin-Scale Quantification in Semi-Arid Environments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 949-962, March.
    3. Fu, Xiaoke & Wu, Xiao & Wang, Haoyu & Chen, Yiwen & Wang, Rui & Wang, Yaqi, 2023. "Effects of fertigation with carboxymethyl cellulose potassium on water conservation, salt suppression, and maize growth in salt-affected soil," Agricultural Water Management, Elsevier, vol. 287(C).
    4. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Wang, Xiukang & Sun, Xin & Yang, Ling & Zhang, Shaohui & Xiang, Youzhen & Zhang, Fucang, 2021. "Crop yield and water productivity under salty water irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Wang, Haidong & Wu, Lifeng & Wang, Xiukang & Zhang, Shaohui & Cheng, Minghui & Feng, Hao & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen, 2021. "Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Suleiman, Ayman A. & Tojo Soler, Cecilia M. & Hoogenboom, Gerrit, 2007. "Evaluation of FAO-56 crop coefficient procedures for deficit irrigation management of cotton in a humid climate," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 33-42, July.
    7. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    8. Liu, Haijun & Wang, Xuming & Zhang, Xian & Zhang, Liwei & Li, Yan & Huang, Guanhua, 2017. "Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China," Agricultural Water Management, Elsevier, vol. 179(C), pages 144-157.
    9. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Jiang, Shufang & Liu, Shuhui, 2012. "Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area," Agricultural Water Management, Elsevier, vol. 110(C), pages 109-117.
    10. Zou, Xiaoxia & Li, Yu’e & Cremades, Roger & Gao, Qingzhu & Wan, Yunfan & Qin, Xiaobo, 2013. "Cost-effectiveness analysis of water-saving irrigation technologies based on climate change response: A case study of China," Agricultural Water Management, Elsevier, vol. 129(C), pages 9-20.
    11. Rao, Sajjan Singh & Tanwar, Suresh Pal Singh & Regar, Panna Lal, 2016. "Effect of deficit irrigation, phosphorous inoculation and cycocel spray on root growth, seed cotton yield and water productivity of drip irrigated cotton in arid environment," Agricultural Water Management, Elsevier, vol. 169(C), pages 14-25.
    12. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Yan, Shicheng & Xiang, Youzhen, 2018. "Rainfall partitioning into throughfall, stemflow and interception loss by maize canopy on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 195(C), pages 25-36.
    13. Wang, He & Feng, Di & Zhang, Anqi & Zheng, Chunlian & Li, Kejiang & Ning, Songrui & Zhang, Junpeng & Sun, Chitao, 2022. "Effects of saline water mulched drip irrigation on cotton yield and soil quality in the North China Plain," Agricultural Water Management, Elsevier, vol. 262(C).
    14. Xiaoxia Zou & Yu’e Li & Kuo Li & Roger Cremades & Qingzhu Gao & Yunfan Wan & Xiaobo Qin, 2015. "Greenhouse gas emissions from agricultural irrigation in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(2), pages 295-315, February.
    15. Molden, David & Oweis, T. Y. & Pasquale, S. & Kijne, Jacob W. & Hanjra, M. A. & Bindraban, P. S. & Bouman, Bas A. M. & Cook, S. & Erenstein, O. & Farahani, H. & Hachum, A. & Hoogeveen, J. & Mahoo, Hen, 2007. "Pathways for increasing agricultural water productivity," Book Chapters,, International Water Management Institute.
    16. Yaqi Wang & Ming Gao & Heting Chen & Yiwen Chen & Lei Wang & Rui Wang, 2023. "Fertigation and Carboxymethyl Cellulose Applications Enhance Water-Use Efficiency, Improving Soil Available Nutrients and Maize Yield in Salt-Affected Soil," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    17. Mohammed Omer & Omololu J. Idowu & April L. Ulery & Dawn VanLeeuwen & Steven J. Guldan, 2018. "Seasonal Changes of Soil Quality Indicators in Selected Arid Cropping Systems," Agriculture, MDPI, vol. 8(8), pages 1-12, August.
    18. Wang, Ruoshui & Wan, Shuqin & Sun, Jiaxia & Xiao, Huijie, 2018. "Soil salinity, sodicity and cotton yield parameters under different drip irrigation regimes during saline wasteland reclamation," Agricultural Water Management, Elsevier, vol. 209(C), pages 20-31.
    19. Christine Heumesser & Sabine Fuss & Jana Szolgayová & Franziska Strauss & Erwin Schmid, 2012. "Investment in Irrigation Systems under Precipitation Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3113-3137, September.
    20. Xiaoxia Zou & Yu-e Li & Qingzhu Gao & Yunfan Wan, 2012. "How water saving irrigation contributes to climate change resilience—a case study of practices in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(2), pages 111-132, February.
    21. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerçek, Sinan & Boydak, Erkan & Okant, Mustafa & Dikilitas, Murat, 2009. "Water pillow irrigation compared to furrow irrigation for soybean production in a semi-arid area," Agricultural Water Management, Elsevier, vol. 96(1), pages 87-92, January.
    2. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Wang, Yahui & Guo, Hui, 2019. "Transpiration of female and male parents of seed maize in northwest China," Agricultural Water Management, Elsevier, vol. 213(C), pages 397-409.
    3. Molden, David & Oweis, T. Y. & Pasquale, S. & Kijne, Jacob W. & Hanjra, M. A. & Bindraban, P. S. & Bouman, Bas A. M. & Cook, S. & Erenstein, O. & Farahani, H. & Hachum, A. & Hoogeveen, J. & Mahoo, Hen, 2007. "Pathways for increasing agricultural water productivity," Book Chapters,, International Water Management Institute.
    4. Gerçek, Sinan & Demirkaya, Mustafa & Işik, Doğan, 2017. "Water pillow irrigation versus drip irrigation with regard to growth and yield of tomato grown under greenhouse conditions in a semi-arid region," Agricultural Water Management, Elsevier, vol. 180(PA), pages 172-177.
    5. Al-Omran, A.M. & Sheta, A.S. & Falatah, A.M. & Al-Harbi, A.R., 2005. "Effect of drip irrigation on squash (Cucurbita pepo) yield and water-use efficiency in sandy calcareous soils amended with clay deposits," Agricultural Water Management, Elsevier, vol. 73(1), pages 43-55, April.
    6. Luquet, Delphine & Vidal, Alain & Smith, Martin & Dauzat, Jean, 2005. "`More crop per drop': how to make it acceptable for farmers?," Agricultural Water Management, Elsevier, vol. 76(2), pages 108-119, August.
    7. Christine Heumesser & Sabine Fuss & Jana Szolgayová & Franziska Strauss & Erwin Schmid, 2012. "Investment in Irrigation Systems under Precipitation Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3113-3137, September.
    8. S. Alan Walters & Ajay K. Jha, 2016. "Sustaining Chili Pepper Production in Afghanistan through Better Irrigation Practices and Management," Agriculture, MDPI, vol. 6(4), pages 1-10, November.
    9. C. Xu & D.I. Leskovar, 2014. "Growth, physiology and yield responses of cabbage to deficit irrigation," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 41(3), pages 138-146.
    10. Heumesser, Christine & Fuss, Sabine & Szolgayova, Jana & Strauss, Franziska & Schmid, Erwin, 2011. "Investment in Irrigation Systems under Weather Uncertainty," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114536, European Association of Agricultural Economists.
    11. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    12. Abd El-Wahed, M.H. & Ali, E.A., 2013. "Effect of irrigation systems, amounts of irrigation water and mulching on corn yield, water use efficiency and net profit," Agricultural Water Management, Elsevier, vol. 120(C), pages 64-71.
    13. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    14. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    15. Tsay, T. S. & Huang, C. C., 2003. "Simulation and analysis of drip irrigation infiltration," IWMI Books, Reports H033383, International Water Management Institute.
    16. Pongspikul, Tayatorn & McCann, Laura M., 2020. "Farmers’ Adoption of Pressure Irrigation Systems: The Case of Cotton Producers in the Southeastern versus Southwestern U.S," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304332, Agricultural and Applied Economics Association.
    17. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    18. Çetin, Öner & Uygan, Demet, 2008. "The effect of drip line spacing, irrigation regimes and planting geometries of tomato on yield, irrigation water use efficiency and net return," Agricultural Water Management, Elsevier, vol. 95(8), pages 949-958, August.
    19. Wang, Yahui & Li, Sien & Qin, Shujing & Guo, Hui & Yang, Danni & Lam, Hon-Ming, 2020. "How can drip irrigation save water and reduce evapotranspiration compared to border irrigation in arid regions in northwest China," Agricultural Water Management, Elsevier, vol. 239(C).
    20. Kumar, Mukesh & Rajput, T.B.S. & Kumar, Rohitashw & Patel, Neelam, 2016. "Water and nitrate dynamics in baby corn (Zea mays L.) under different fertigation frequencies and operating pressures in semi-arid region of India," Agricultural Water Management, Elsevier, vol. 163(C), pages 263-274.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:83:y:2006:i:1-2:p:30-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.