IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9803-d626728.html
   My bibliography  Save this article

Effective Mooring Rope Tension in Mechanical and Hydraulic Power Take-Off of Wave Energy Converter

Author

Listed:
  • Ji Woo Nam

    (Center for Defense Resource Management, Korea Institute for Defense Analyses, Seoul 02455, Korea)

  • Yong Jun Sung

    (Ingine Inc., Changdo Building, Seoul 03722, Korea)

  • Seong Wook Cho

    (School of Mechanical Engineering, Chung-Ang University, Seoul 156-756, Korea)

Abstract

The InWave wave energy converter (WEC), which is three-tether WEC type, absorbs wave energy via moored cylindrical buoys with three ropes connected to a terrestrial power take-off (PTO) through a subsea pulley. In this study, a simulation study was conducted to select a suitable PTO when designing a three-tether WEC. The mechanical PTO transfers energy from the buoy to the generator using a gearbox, whereas the hydraulic PTO uses a hydraulic pump, an accumulator, and a hydraulic motor to convert mechanical energy into electrical energy. The hydraulic PTO has a lower energy conversion efficiency than that of the mechanical PTO owing to losses resulting from pipe friction and the individual efficiencies of the hydraulic pumps and motors. However, the efficiencies mentioned above are not the efficiency of the whole system. The efficiency of the whole system should be analyzed considering the tension of the rope and the efficiency of the generator. In this study, the energy conversion efficiencies of the InWave WEC installed the mechanical and hydraulic PTO devices are compared, and their behaviors are analyzed through numerical simulations. The mechanics of mechanical and hydraulic PTO applied to InWave are mathematically expressed, and the issues of the elements constituting the PTO are explained. Finally, factors to consider for PTO selection are presented.

Suggested Citation

  • Ji Woo Nam & Yong Jun Sung & Seong Wook Cho, 2021. "Effective Mooring Rope Tension in Mechanical and Hydraulic Power Take-Off of Wave Energy Converter," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9803-:d:626728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Guedes Soares, C., 2016. "Power take-off concept for wave energy converters based on oil-hydraulic transformer units," Renewable Energy, Elsevier, vol. 86(C), pages 1232-1246.
    2. Ropero-Giralda, Pablo & Crespo, Alejandro J.C. & Tagliafierro, Bonaventura & Altomare, Corrado & Domínguez, José M. & Gómez-Gesteira, Moncho & Viccione, Giacomo, 2020. "Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics," Renewable Energy, Elsevier, vol. 162(C), pages 1763-1776.
    3. Markel Penalba & John V. Ringwood, 2016. "A Review of Wave-to-Wire Models for Wave Energy Converters," Energies, MDPI, vol. 9(7), pages 1-45, June.
    4. Brito, M. & Canelas, R.B. & García-Feal, O. & Domínguez, J.M. & Crespo, A.J.C. & Ferreira, R.M.L. & Neves, M.G. & Teixeira, L., 2020. "A numerical tool for modelling oscillating wave surge converter with nonlinear mechanical constraints," Renewable Energy, Elsevier, vol. 146(C), pages 2024-2043.
    5. Seung Kwan Song & Yong Jun Sung & Jin Bae Park, 2017. "Numerical Modeling and 3D Investigation of INWAVE Device," Sustainability, MDPI, vol. 9(4), pages 1-23, March.
    6. Zang, Zhipeng & Zhang, Qinghe & Qi, Yue & Fu, Xiaoying, 2018. "Hydrodynamic responses and efficiency analyses of a heaving-buoy wave energy converter with PTO damping in regular and irregular waves," Renewable Energy, Elsevier, vol. 116(PA), pages 527-542.
    7. McCabe, A.P. & Aggidis, G.A. & Widden, M.B., 2010. "Optimizing the shape of a surge-and-pitch wave energy collector using a genetic algorithm," Renewable Energy, Elsevier, vol. 35(12), pages 2767-2775.
    8. Stefania Naty & Antonino Viviano & Enrico Foti, 2016. "Wave Energy Exploitation System Integrated in the Coastal Structure of a Mediterranean Port," Sustainability, MDPI, vol. 8(12), pages 1-19, December.
    9. Goggins, Jamie & Finnegan, William, 2014. "Shape optimisation of floating wave energy converters for a specified wave energy spectrum," Renewable Energy, Elsevier, vol. 71(C), pages 208-220.
    10. Wanan Sheng & Tony Lewis, 2016. "Energy Conversion: A Comparison of Fix- and Self-Referenced Wave Energy Converters," Energies, MDPI, vol. 9(12), pages 1-19, December.
    11. Zhang, Dahai & Li, Wei & Lin, Yonggang & Bao, Jingwei, 2012. "An overview of hydraulic systems in wave energy application in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4522-4526.
    12. Wang, Chen & Zhang, Yongliang, 2021. "Hydrodynamic performance of an offshore Oscillating Water Column device mounted over an immersed horizontal plate: A numerical study," Energy, Elsevier, vol. 222(C).
    13. Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Rodríguez, Claudio A. & Ramos, Victor & López, Mario, 2019. "The CECO wave energy converter: Recent developments," Renewable Energy, Elsevier, vol. 139(C), pages 368-384.
    14. Henderson, Ross, 2006. "Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter," Renewable Energy, Elsevier, vol. 31(2), pages 271-283.
    15. Rico H. Hansen & Morten M. Kramer & Enrique Vidal, 2013. "Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter," Energies, MDPI, vol. 6(8), pages 1-44, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhigang Liu & Wei Huang & Shi Liu & Xiaomei Wu & Chun Sing Lai & Yi Yang, 2023. "An Improved Hydraulic Energy Storage Wave Power-Generation System Based on QPR Control," Energies, MDPI, vol. 16(2), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Guedes Soares, C., 2017. "Analysis of electrical drive speed control limitations of a power take-off system for wave energy converters," Renewable Energy, Elsevier, vol. 113(C), pages 335-346.
    2. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Soares, C. Guedes, 2018. "Design tradeoffs of an oil-hydraulic power take-off for wave energy converters," Renewable Energy, Elsevier, vol. 129(PA), pages 245-259.
    3. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
    4. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    5. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Soares, C. Guedes, 2016. "Speed control of oil-hydraulic power take-off system for oscillating body type wave energy converters," Renewable Energy, Elsevier, vol. 97(C), pages 769-783.
    6. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    7. Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.
    8. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Guedes Soares, C., 2016. "Power take-off concept for wave energy converters based on oil-hydraulic transformer units," Renewable Energy, Elsevier, vol. 86(C), pages 1232-1246.
    9. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie, 2024. "An optimization approach for geometry design of multi-axis wave energy converter," Energy, Elsevier, vol. 301(C).
    10. Gao, Hong & Xiao, Jie & Liang, Ruizhi, 2024. "Capture mechanism of a multi-dimensional wave energy converter with a strong coupling parallel drive," Applied Energy, Elsevier, vol. 361(C).
    11. Penalba, Markel & Giorgi, Giussepe & Ringwood, John V., 2017. "Mathematical modelling of wave energy converters: A review of nonlinear approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1188-1207.
    12. Xuhui, Yue & Qijuan, Chen & Zenghui, Wang & Dazhou, Geng & Donglin, Yan & Wen, Jiang & Weiyu, Wang, 2019. "A novel nonlinear state space model for the hydraulic power take-off of a wave energy converter," Energy, Elsevier, vol. 180(C), pages 465-479.
    13. Penalba, Markel & Ringwood, John V., 2019. "A high-fidelity wave-to-wire model for wave energy converters," Renewable Energy, Elsevier, vol. 134(C), pages 367-378.
    14. Pablo Ropero-Giralda & Alejandro J. C. Crespo & Ryan G. Coe & Bonaventura Tagliafierro & José M. Domínguez & Giorgio Bacelli & Moncho Gómez-Gesteira, 2021. "Modelling a Heaving Point-Absorber with a Closed-Loop Control System Using the DualSPHysics Code," Energies, MDPI, vol. 14(3), pages 1-20, February.
    15. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Zulkifli Mohd Yusop & Aliashim Albani, 2020. "An Estimation of Hydraulic Power Take-off Unit Parameters for Wave Energy Converter Device Using Non-Evolutionary NLPQL and Evolutionary GA Approaches," Energies, MDPI, vol. 14(1), pages 1-26, December.
    16. Yadong Wen & Weijun Wang & Hua Liu & Longbo Mao & Hongju Mi & Wenqiang Wang & Guoping Zhang, 2018. "A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea," Energies, MDPI, vol. 11(10), pages 1-22, October.
    17. Yubo Niu & Xingyuan Gu & Xuhui Yue & Yang Zheng & Peijie He & Qijuan Chen, 2022. "Research on Thermodynamic Characteristics of Hydraulic Power Take-Off System in Wave Energy Converter," Energies, MDPI, vol. 15(4), pages 1-15, February.
    18. Li, Xiaofan & Chen, ChienAn & Li, Qiaofeng & Xu, Lin & Liang, Changwei & Ngo, Khai & Parker, Robert G. & Zuo, Lei, 2020. "A compact mechanical power take-off for wave energy converters: Design, analysis, and test verification," Applied Energy, Elsevier, vol. 278(C).
    19. Markel Penalba & Nathan P. Sell & Andy J. Hillis & John V. Ringwood, 2017. "Validating a Wave-to-Wire Model for a Wave Energy Converter—Part I: The Hydraulic Transmission System," Energies, MDPI, vol. 10(7), pages 1-22, July.
    20. Penalba, Markel & Davidson, Josh & Windt, Christian & Ringwood, John V., 2018. "A high-fidelity wave-to-wire simulation platform for wave energy converters: Coupled numerical wave tank and power take-off models," Applied Energy, Elsevier, vol. 226(C), pages 655-669.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9803-:d:626728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.