IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2020i1p79-d468360.html
   My bibliography  Save this article

An Estimation of Hydraulic Power Take-off Unit Parameters for Wave Energy Converter Device Using Non-Evolutionary NLPQL and Evolutionary GA Approaches

Author

Listed:
  • Mohd Afifi Jusoh

    (Renewable Energy & Power Research Interest Group (REPRIG), Eastern Corridor Renewable Energy Special Interest Group, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia)

  • Mohd Zamri Ibrahim

    (Renewable Energy & Power Research Interest Group (REPRIG), Eastern Corridor Renewable Energy Special Interest Group, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia)

  • Muhamad Zalani Daud

    (Renewable Energy & Power Research Interest Group (REPRIG), Eastern Corridor Renewable Energy Special Interest Group, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia)

  • Zulkifli Mohd Yusop

    (Renewable Energy & Power Research Interest Group (REPRIG), Eastern Corridor Renewable Energy Special Interest Group, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia)

  • Aliashim Albani

    (Renewable Energy & Power Research Interest Group (REPRIG), Eastern Corridor Renewable Energy Special Interest Group, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia)

Abstract

This study is concerned with the application of two major kinds of optimisation algorithms on the hydraulic power take-off (HPTO) model for the wave energy converters (WECs). In general, the HPTO unit’s performance depends on the configuration of its parameters such as hydraulic cylinder size, hydraulic accumulator capacity and pre-charge pressure and hydraulic motor displacement. Conventionally, the optimal parameters of the HPTO unit need to be manually estimated by repeating setting the parameters’ values during the simulation process. However, such an estimation method can easily be exposed to human error and would subsequently result in an inaccurate selection of HPTO parameters for WECs. Therefore, an effective approach of using the non-evolutionary Non-Linear Programming by Quadratic Lagrangian (NLPQL) and evolutionary Genetic Algorithm (GA) algorithms for determining the optimal HPTO parameters was explored in the present study. A simulation–optimisation of the HPTO model was performed in the MATLAB/Simulink environment. A complete WECs model was built using Simscape Fluids toolbox in MATLAB/Simulink. The actual specifications of hydraulic components from the manufacturer were used during the simulation study. The simulation results showed that the performance of optimal HPTO units optimised by NLPQL and GA approaches have significantly improved up to 96% and 97%, respectively, in regular wave conditions. The results also showed that both optimal HPTO units were capable of generating electricity up to 62% and 77%, respectively, of their rated capacity in irregular wave circumstances.

Suggested Citation

  • Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Zulkifli Mohd Yusop & Aliashim Albani, 2020. "An Estimation of Hydraulic Power Take-off Unit Parameters for Wave Energy Converter Device Using Non-Evolutionary NLPQL and Evolutionary GA Approaches," Energies, MDPI, vol. 14(1), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:79-:d:468360
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/1/79/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/1/79/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    2. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    3. Galván-Pozos, D.E. & Ocampo-Torres, F.J., 2020. "Dynamic analysis of a six-degree of freedom wave energy converter based on the concept of the Stewart-Gough platform," Renewable Energy, Elsevier, vol. 146(C), pages 1051-1061.
    4. Calvário, M. & Gaspar, J.F. & Kamarlouei, M. & Hallak, T.S. & Guedes Soares, C., 2020. "Oil-hydraulic power take-off concept for an oscillating wave surge converter," Renewable Energy, Elsevier, vol. 159(C), pages 1297-1309.
    5. Brito, Moisés & Ferreira, Rui M.L. & Teixeira, Luis & Neves, Maria G. & Canelas, Ricardo B., 2020. "Experimental investigation on the power capture of an oscillating wave surge converter in unidirectional waves," Renewable Energy, Elsevier, vol. 151(C), pages 975-992.
    6. Rico H. Hansen & Morten M. Kramer & Enrique Vidal, 2013. "Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter," Energies, MDPI, vol. 6(8), pages 1-44, August.
    7. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Guedes Soares, C., 2016. "Power take-off concept for wave energy converters based on oil-hydraulic transformer units," Renewable Energy, Elsevier, vol. 86(C), pages 1232-1246.
    8. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    9. Ransley, E.J. & Greaves, D.M. & Raby, A. & Simmonds, D. & Jakobsen, M.M. & Kramer, M., 2017. "RANS-VOF modelling of the Wavestar point absorber," Renewable Energy, Elsevier, vol. 109(C), pages 49-65.
    10. Penalba, Markel & Davidson, Josh & Windt, Christian & Ringwood, John V., 2018. "A high-fidelity wave-to-wire simulation platform for wave energy converters: Coupled numerical wave tank and power take-off models," Applied Energy, Elsevier, vol. 226(C), pages 655-669.
    11. Anders Hedegaard Hansen & Magnus F. Asmussen & Michael M. Bech, 2018. "Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System," Energies, MDPI, vol. 11(3), pages 1-17, March.
    12. McCabe, A.P. & Aggidis, G.A. & Widden, M.B., 2010. "Optimizing the shape of a surge-and-pitch wave energy collector using a genetic algorithm," Renewable Energy, Elsevier, vol. 35(12), pages 2767-2775.
    13. Windt, Christian & Davidson, Josh & Ransley, Edward J. & Greaves, Deborah & Jakobsen, Morten & Kramer, Morten & Ringwood, John V., 2020. "Validation of a CFD-based numerical wave tank model for the power production assessment of the wavestar ocean wave energy converter," Renewable Energy, Elsevier, vol. 146(C), pages 2499-2516.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Soares, C. Guedes, 2018. "Design tradeoffs of an oil-hydraulic power take-off for wave energy converters," Renewable Energy, Elsevier, vol. 129(PA), pages 245-259.
    2. Luan, Zhengxiao & Chen, Bangqi & Jin, Ruijia & He, Guanghua & Ghassemi, Hassan & Jing, Penglin, 2024. "Validation of a numerical wave tank based on overset mesh for the wavestar-like wave energy converter in the South China Sea," Energy, Elsevier, vol. 290(C).
    3. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    4. Ji Woo Nam & Yong Jun Sung & Seong Wook Cho, 2021. "Effective Mooring Rope Tension in Mechanical and Hydraulic Power Take-Off of Wave Energy Converter," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
    5. Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.
    6. Zhang, Yongxing & Zhao, Yongjie & Sun, Wei & Li, Jiaxuan, 2021. "Ocean wave energy converters: Technical principle, device realization, and performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
    8. Sricharan, V.V.S. & Chandrasekaran, Srinivasan, 2021. "Time-domain analysis of a bean-shaped multi-body floating wave energy converter with a hydraulic power take-off using WEC-Sim," Energy, Elsevier, vol. 223(C).
    9. Bao, Jian & Yu, Dingyong, 2024. "Hydrodynamic performance optimization of a cost-effective WEC-type floating breakwater with half-airfoil bottom," Renewable Energy, Elsevier, vol. 226(C).
    10. Zhang, Jincheng & Zhao, Xiaowei & Greaves, Deborah & Jin, Siya, 2023. "Modeling of a hinged-raft wave energy converter via deep operator learning and wave tank experiments," Applied Energy, Elsevier, vol. 341(C).
    11. Yang, Shaohui & He, Hongzhou & Chen, Hu & Wang, Yongqing & Li, Hui & Zheng, Songgen, 2019. "Experimental study on the performance of a floating array-point-raft wave energy converter under random wave conditions," Renewable Energy, Elsevier, vol. 139(C), pages 538-550.
    12. Gao, Hong & Xiao, Jie & Liang, Ruizhi, 2024. "Capture mechanism of a multi-dimensional wave energy converter with a strong coupling parallel drive," Applied Energy, Elsevier, vol. 361(C).
    13. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Guedes Soares, C., 2017. "Analysis of electrical drive speed control limitations of a power take-off system for wave energy converters," Renewable Energy, Elsevier, vol. 113(C), pages 335-346.
    14. Chen, Zihe & Zhang, Xiantao & Liu, Lei & Tian, Xinliang & Li, Xin, 2024. "Mechanical property identification and performance evaluation of a power take-off combined with a mechanical motion rectifier and a magnetic bistable device," Applied Energy, Elsevier, vol. 353(PA).
    15. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Soares, C. Guedes, 2016. "Speed control of oil-hydraulic power take-off system for oscillating body type wave energy converters," Renewable Energy, Elsevier, vol. 97(C), pages 769-783.
    16. Xuhui, Yue & Qijuan, Chen & Zenghui, Wang & Dazhou, Geng & Donglin, Yan & Wen, Jiang & Weiyu, Wang, 2019. "A novel nonlinear state space model for the hydraulic power take-off of a wave energy converter," Energy, Elsevier, vol. 180(C), pages 465-479.
    17. Zhu, Kai & Cao, Feifei & Wang, Tianyuan & Tao, Ji & Wei, Zhiwen & Shi, Hongda, 2024. "A comparative investigation into the dynamic performance of multiple wind-wave hybrid systems utilizing a full-process analytical model," Applied Energy, Elsevier, vol. 360(C).
    18. Yadong Wen & Weijun Wang & Hua Liu & Longbo Mao & Hongju Mi & Wenqiang Wang & Guoping Zhang, 2018. "A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea," Energies, MDPI, vol. 11(10), pages 1-22, October.
    19. Li, Xiaofan & Chen, ChienAn & Li, Qiaofeng & Xu, Lin & Liang, Changwei & Ngo, Khai & Parker, Robert G. & Zuo, Lei, 2020. "A compact mechanical power take-off for wave energy converters: Design, analysis, and test verification," Applied Energy, Elsevier, vol. 278(C).
    20. Wei Zhang & Shizhen Li & Yanjun Liu & Detang Li & Qin He, 2020. "Optimal Control for Hydraulic Cylinder Tracking Displacement of Wave Energy Experimental Platform," Energies, MDPI, vol. 13(11), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:79-:d:468360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.