IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9681-d624041.html
   My bibliography  Save this article

Surrogate Safety Measures Prediction at Multiple Timescales in V2P Conflicts Based on Gated Recurrent Unit

Author

Listed:
  • Matteo Miani

    (Polytechnic Department of Engineering and Architecture (DPIA), University of Udine, Via del Cotonificio 114, 33100 Udine, Italy)

  • Matteo Dunnhofer

    (Department of Mathematics, Computer Science and Physics (DMIF), University of Udine, Via delle Scienze 206, 33100 Udine, Italy)

  • Christian Micheloni

    (Department of Mathematics, Computer Science and Physics (DMIF), University of Udine, Via delle Scienze 206, 33100 Udine, Italy)

  • Andrea Marini

    (Department of Languages, Literatures, Communication, Education and Society (DILL), University of Udine, Via Margreth 3, 33100 Udine, Italy
    Claudiana—Landesfachhochschule für Gesundheitsberufe, I-39100 Bolzano, Italy)

  • Nicola Baldo

    (Polytechnic Department of Engineering and Architecture (DPIA), University of Udine, Via del Cotonificio 114, 33100 Udine, Italy)

Abstract

Improving pedestrian safety at urban intersections requires intelligent systems that should not only understand the actual vehicle–pedestrian (V2P) interaction state but also proactively anticipate the event’s future severity pattern. This paper presents a Gated Recurrent Unit-based system that aims to predict, up to 3 s ahead in time, the severity level of V2P encounters, depending on the current scene representation drawn from on-board radars’ data. A car-driving simulator experiment has been designed to collect sequential mobility features on a cohort of 65 licensed university students who faced different V2P conflicts on a planned urban route. To accurately describe the pedestrian safety condition during the encounter process, a combination of surrogate safety indicators, namely TAdv (Time Advantage) and T 2 (Nearness of the Encroachment), are considered for modeling. Due to the nature of these indicators, multiple recurrent neural networks are trained to separately predict T 2 continuous values and TAdv categories. Afterwards, their predictions are exploited to label serious conflict interactions. As a comparison, an additional Gated Recurrent Unit (GRU) neural network is developed to directly predict the severity level of inner-city encounters. The latter neural model reaches the best performance on the test set, scoring a recall value of 0.899. Based on selected threshold values, the presented models can be used to label pedestrians near accident events and to enhance existing intelligent driving systems.

Suggested Citation

  • Matteo Miani & Matteo Dunnhofer & Christian Micheloni & Andrea Marini & Nicola Baldo, 2021. "Surrogate Safety Measures Prediction at Multiple Timescales in V2P Conflicts Based on Gated Recurrent Unit," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9681-:d:624041
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9681/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9681/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cao, Jian & Li, Zhi & Li, Jian, 2019. "Financial time series forecasting model based on CEEMDAN and LSTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 127-139.
    2. Renfei Wu & Xunjia Zheng & Yongneng Xu & Wei Wu & Guopeng Li & Qing Xu & Zhuming Nie, 2019. "Modified Driving Safety Field Based on Trajectory Prediction Model for Pedestrian–Vehicle Collision," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sumit Saroha & Marta Zurek-Mortka & Jerzy Ryszard Szymanski & Vineet Shekher & Pardeep Singla, 2021. "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals," Energies, MDPI, vol. 14(19), pages 1-21, September.
    2. Zhou, Zhongbao & Gao, Meng & Liu, Qing & Xiao, Helu, 2020. "Forecasting stock price movements with multiple data sources: Evidence from stock market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    3. Wei-Chang Yeh & Yu-Hsin Hsieh & Chia-Ling Huang, 2022. "Newly Developed Flexible Grid Trading Model Combined ANN and SSO algorithm," Papers 2211.12839, arXiv.org.
    4. Xuliang Tang & Heng Wan & Weiwen Wang & Mengxu Gu & Linfeng Wang & Linfeng Gan, 2023. "Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    5. Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    6. Sanghyuk Yoo & Sangyong Jeon & Seunghwan Jeong & Heesoo Lee & Hosun Ryou & Taehyun Park & Yeonji Choi & Kyongjoo Oh, 2021. "Prediction of the Change Points in Stock Markets Using DAE-LSTM," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    7. Zheng, Chengli & Su, Kuangxi & Yao, Yinhong, 2021. "Hedging futures performance with denoising and noise-assisted strategies," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    8. Xiangzhou Chen & Zhi Long, 2023. "E-Commerce Enterprises Financial Risk Prediction Based on FA-PSO-LSTM Neural Network Deep Learning Model," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    9. Lin, Yu & Lu, Qin & Tan, Bin & Yu, Yuanyuan, 2022. "Forecasting energy prices using a novel hybrid model with variational mode decomposition," Energy, Elsevier, vol. 246(C).
    10. Meng, Huixing & Geng, Mengyao & Xing, Jinduo & Zio, Enrico, 2022. "A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena," Energy, Elsevier, vol. 261(PB).
    11. Min Liu & Wei‐Chong Choo & Chi‐Chuan Lee & Chien‐Chiang Lee, 2023. "Trading volume and realized volatility forecasting: Evidence from the China stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 76-100, January.
    12. Yang, Shaobo & Deng, Zegui & Li, Xingfei & Zheng, Chongwei & Xi, Lintong & Zhuang, Jucheng & Zhang, Zhenquan & Zhang, Zhiyou, 2021. "A novel hybrid model based on STL decomposition and one-dimensional convolutional neural networks with positional encoding for significant wave height forecast," Renewable Energy, Elsevier, vol. 173(C), pages 531-543.
    13. Axelsson, Birger & Song, Han-Suck, 2023. "Univariate Forecasting for REITs with Deep Learning: A Comparative Analysis with an ARIMA Model," Working Paper Series 23/10, Royal Institute of Technology, Department of Real Estate and Construction Management & Banking and Finance, revised 14 Nov 2023.
    14. Fuping Liu & Ying Liu & Chen Yang & Ruixun Lai, 2022. "A New Precipitation Prediction Method Based on CEEMDAN-IWOA-BP Coupling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4785-4797, September.
    15. Danijel Jevtic & Romain Deleze & Joerg Osterrieder, 2022. "AI for trading strategies," Papers 2208.07168, arXiv.org.
    16. Cheng Peng & Chenxiao Ma & Yunhao Dong, 2023. "Unravelling the Formation Mechanism of Sustainable Underground Pedestrian Systems: Two Case Studies in Shanghai," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    17. Dongsu Kim & Yongjun Lee & Kyungil Chin & Pedro J. Mago & Heejin Cho & Jian Zhang, 2023. "Implementation of a Long Short-Term Memory Transfer Learning (LSTM-TL)-Based Data-Driven Model for Building Energy Demand Forecasting," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    18. Qing Zhu & Renxian Zuo & Shan Liu & Fan Zhang, 2020. "Online dynamic group-buying community analysis based on high frequency time series simulation," Electronic Commerce Research, Springer, vol. 20(1), pages 81-118, March.
    19. Liu, Jiayue & Ye, Jimin & E, Jianwei, 2023. "A multi-scale forecasting model for CPI based on independent component analysis and non-linear autoregressive neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    20. Seyed Mehrzad Asaad Sajadi & Pouya Khodaee & Ehsan Hajizadeh & Sabri Farhadi & Sohaib Dastgoshade & Bo Du, 2022. "Deep Learning-Based Methods for Forecasting Brent Crude Oil Return Considering COVID-19 Pandemic Effect," Energies, MDPI, vol. 15(21), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9681-:d:624041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.