IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v145y2013i1p38-52.html
   My bibliography  Save this article

A hybrid genetic algorithm for the job shop scheduling problem with practical considerations for manufacturing costs: Investigations motivated by vehicle production

Author

Listed:
  • Zhang, Rui
  • Chang, Pei-Chann
  • Wu, Cheng

Abstract

This paper studies a job shop scheduling problem with two new objective functions based on the setup and synergy costs besides the traditional total weighted tardiness criterion. The background is found in the real-world situation of a commercial vehicle producer, where the reduction of manufacturing costs has become a significant concern like in many heavy industry firms. The cost-related objective functions have been modeled in a quite general way so that they can also be applied to other similar types of production. To tackle this multi-objective scheduling problem, the paper presents a Pareto-based genetic algorithm incorporating a local search module, which utilizes the neighborhood properties specifically developed for each objective function. The computational experiments on both real-world and randomly generated scheduling instances verify the effectiveness of the proposed approach. The research presented in this paper could shed some light on the modeling and heuristic solving of practical production scheduling problems.

Suggested Citation

  • Zhang, Rui & Chang, Pei-Chann & Wu, Cheng, 2013. "A hybrid genetic algorithm for the job shop scheduling problem with practical considerations for manufacturing costs: Investigations motivated by vehicle production," International Journal of Production Economics, Elsevier, vol. 145(1), pages 38-52.
  • Handle: RePEc:eee:proeco:v:145:y:2013:i:1:p:38-52
    DOI: 10.1016/j.ijpe.2012.10.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527312004665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2012.10.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morin, Sara & Gagné, Caroline & Gravel, Marc, 2009. "Ant colony optimization with a specialized pheromone trail for the car-sequencing problem," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1185-1191, September.
    2. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    3. Z C Zhu & K M Ng & H L Ong, 2010. "A modified tabu search algorithm for cost-based job shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 611-619, April.
    4. S Q Liu & E Kozan, 2012. "A hybrid shifting bottleneck procedure algorithm for the parallel-machine job-shop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(2), pages 168-182, February.
    5. Tan, K.C. & Goh, C.K. & Yang, Y.J. & Lee, T.H., 2006. "Evolving better population distribution and exploration in evolutionary multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 171(2), pages 463-495, June.
    6. G I Zobolas & C D Tarantilis & G Ioannou, 2009. "A hybrid evolutionary algorithm for the job shop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 221-235, February.
    7. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    8. Sculli, Dominic, 1980. "Priority dispatching rules in job shops with assembly operations and random delays," Omega, Elsevier, vol. 8(2), pages 227-234.
    9. Ari P. J. Vepsalainen & Thomas E. Morton, 1987. "Priority Rules for Job Shops with Weighted Tardiness Costs," Management Science, INFORMS, vol. 33(8), pages 1035-1047, August.
    10. J. Carlier & E. Pinson, 1989. "An Algorithm for Solving the Job-Shop Problem," Management Science, INFORMS, vol. 35(2), pages 164-176, February.
    11. Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
    12. Ramasesh, R, 1990. "Dynamic job shop scheduling: A survey of simulation research," Omega, Elsevier, vol. 18(1), pages 43-57.
    13. Egon Balas & Alkis Vazacopoulos, 1998. "Guided Local Search with Shifting Bottleneck for Job Shop Scheduling," Management Science, INFORMS, vol. 44(2), pages 262-275, February.
    14. Sabuncuoglu, I. & Comlekci, A., 2002. "Operation-based flowtime estimation in a dynamic job shop," Omega, Elsevier, vol. 30(6), pages 423-442, December.
    15. Al-Hinai, Nasr & ElMekkawy, T.Y., 2011. "Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm," International Journal of Production Economics, Elsevier, vol. 132(2), pages 279-291, August.
    16. M Gravel & C Gagné & W L Price, 2005. "Review and comparison of three methods for the solution of the car sequencing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(11), pages 1287-1295, November.
    17. Jaszkiewicz, Andrzej, 2002. "Genetic local search for multi-objective combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 137(1), pages 50-71, February.
    18. Moslehi, Ghasem & Mahnam, Mehdi, 2011. "A Pareto approach to multi-objective flexible job-shop scheduling problem using particle swarm optimization and local search," International Journal of Production Economics, Elsevier, vol. 129(1), pages 14-22, January.
    19. Kenneth R. Baker, 1984. "Sequencing Rules and Due-Date Assignments in a Job Shop," Management Science, INFORMS, vol. 30(9), pages 1093-1104, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian MICU & Angela Eliza MICU & Kamer AIVAZ & Alexandru CAPATINA, 2016. "The Genetic Approach Of Marketing Research," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(3), pages 229-246.
    2. Naderi, B. & Zandieh, M., 2014. "Modeling and scheduling no-wait open shop problems," International Journal of Production Economics, Elsevier, vol. 158(C), pages 256-266.
    3. Giampieri, A. & Ling-Chin, J. & Ma, Z. & Smallbone, A. & Roskilly, A.P., 2020. "A review of the current automotive manufacturing practice from an energy perspective," Applied Energy, Elsevier, vol. 261(C).
    4. Li Zhou & Zhuoning Chen & Shaoping Chen, 2018. "An effective detailed operation scheduling in MES based on hybrid genetic algorithm," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 135-153, January.
    5. Hong-Sen Yan & Wen-Chao Li, 2017. "A multi-objective scheduling algorithm with self-evolutionary feature for job-shop-like knowledgeable manufacturing cell," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 337-351, February.
    6. Lili Dai & He Lu & Dezheng Hua & Xinhua Liu & Hongming Chen & Adam Glowacz & Grzegorz Królczyk & Zhixiong Li, 2022. "A Novel Production Scheduling Approach Based on Improved Hybrid Genetic Algorithm," Sustainability, MDPI, vol. 14(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raja Awais Liaqait & Shermeen Hamid & Salman Sagheer Warsi & Azfar Khalid, 2021. "A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    2. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    3. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
    4. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    5. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    6. Zhang, Rui & Song, Shiji & Wu, Cheng, 2013. "A hybrid artificial bee colony algorithm for the job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 167-178.
    7. Amaral Armentano, Vinicius & Rigao Scrich, Cintia, 2000. "Tabu search for minimizing total tardiness in a job shop," International Journal of Production Economics, Elsevier, vol. 63(2), pages 131-140, January.
    8. Ouenniche, J. & Bertrand, J. W. M., 2001. "The finite horizon economic lot sizing problem in job shops: : the multiple cycle approach," International Journal of Production Economics, Elsevier, vol. 74(1-3), pages 49-61, December.
    9. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    10. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    11. Ansis Ozolins, 2020. "Bounded dynamic programming algorithm for the job shop problem with sequence dependent setup times," Operational Research, Springer, vol. 20(3), pages 1701-1728, September.
    12. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    13. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    14. Diarmuid Grimes & Emmanuel Hebrard, 2015. "Solving Variants of the Job Shop Scheduling Problem Through Conflict-Directed Search," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 268-284, May.
    15. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
    16. Holthaus, Oliver & Rajendran, Chandrasekharan, 1997. "Efficient dispatching rules for scheduling in a job shop," International Journal of Production Economics, Elsevier, vol. 48(1), pages 87-105, January.
    17. Chen, Haoxun & Luh, Peter B., 2003. "An alternative framework to Lagrangian relaxation approach for job shop scheduling," European Journal of Operational Research, Elsevier, vol. 149(3), pages 499-512, September.
    18. Z C Zhu & K M Ng & H L Ong, 2010. "A modified tabu search algorithm for cost-based job shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 611-619, April.
    19. F. Guerriero, 2008. "Hybrid Rollout Approaches for the Job Shop Scheduling Problem," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 419-438, November.
    20. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:145:y:2013:i:1:p:38-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.