IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v22y2018i5p1105-1116.html
   My bibliography  Save this article

LEED v4: Where Are We Now? Critical Assessment through the LCA of an Office Building Using a Low Impact Energy Consumption Mix

Author

Listed:
  • Yannick Lessard
  • Chirjiv Anand
  • Pierre Blanchet
  • Caroline Frenette
  • Ben Amor

Abstract

Various green building rating systems (GBRSs) have been proposed to reduce the environmental impact of buildings. However, these GBRSs, such as Leadership in Energy and Environmental Design (LEED) v4, are primarily oriented toward a building's use stage energy consumption. Their application in contexts involving a high share of renewable energy, and hence a low‐impact electricity mix, can result in undesirable side effects. This paper aims to investigate such effects, based on an existing office building in Quebec (Canada), where more than 95% of the electricity consumption mix is renewable. This paper compares the material impacts from a low‐energy context building to material considerations in LEED v4. In addition to their contributions to the building impacts, material impacts are also defined by their potential to change impacts with different material configurations. Life cycle assessment (LCA) impacts were evaluated using Simapro 8.2, the ecoinvent 3.1 database, and the IMPACT 2002+ method. The building LCA results indicated higher environmental impact contributions from materials (>50%) compared to those from energy consumption. This is in contrast with the LEED v4 rating system, as it did not seem to be as effective in capturing such effects. The conclusions drawn from this work will help stakeholders from the buildings sector to have a better understanding of building environmental profiles, and the limitations of LEED v4 in contexts involving a low‐impact energy mix. In addition, this critical assessment can be used to further improve the LEED certification system.

Suggested Citation

  • Yannick Lessard & Chirjiv Anand & Pierre Blanchet & Caroline Frenette & Ben Amor, 2018. "LEED v4: Where Are We Now? Critical Assessment through the LCA of an Office Building Using a Low Impact Energy Consumption Mix," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1105-1116, October.
  • Handle: RePEc:bla:inecol:v:22:y:2018:i:5:p:1105-1116
    DOI: 10.1111/jiec.12647
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12647
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    2. Wu, Peng & Song, Yongze & Shou, Wenchi & Chi, Hunglin & Chong, Heap-Yih & Sutrisna, Monty, 2017. "A comprehensive analysis of the credits obtained by LEED 2009 certified green buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 370-379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhuyuan Xue & Hongbo Liu & Qinxiao Zhang & Jingxin Wang & Jilin Fan & Xia Zhou, 2019. "The Impact Assessment of Campus Buildings Based on a Life Cycle Assessment–Life Cycle Cost Integrated Model," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    2. Svetlana Pushkar, 2023. "LEED-CI v4 Projects in Terms of Life Cycle Assessment in Manhattan, New York City: A Case Study," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    3. Svetlana Pushkar, 2023. "Life-Cycle Assessment of LEED-CI v4 Projects in Shanghai, China: A Case Study," Sustainability, MDPI, vol. 15(7), pages 1-15, March.
    4. Kikki Lambrecht Ipsen & Massimo Pizzol & Morten Birkved & Ben Amor, 2024. "Environmental performance of eco‐design strategies applied to the building sector," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 556-572, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    2. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    3. Yuanxin Liu & FengYun Li & Yi Wang & Xinhua Yu & Jiahai Yuan & Yuwei Wang, 2018. "Assessing the Environmental Impact Caused by Power Grid Projects in High Altitude Areas Based on BWM and Vague Sets Techniques," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
    4. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    5. Peng Wu & Yongze Song & Jun Wang & Xiangyu Wang & Xianbo Zhao & Qinghua He, 2017. "Regional Variations of Credits Obtained by LEED 2009 Certified Green Buildings—A Country Level Analysis," Sustainability, MDPI, vol. 10(1), pages 1-18, December.
    6. Hanli Chen & Chunmei Lu, 2023. "Research on the Spatial Effect and Threshold Characteristics of New-Type Urbanization on Carbon Emissions in China’s Construction Industry," Sustainability, MDPI, vol. 15(22), pages 1-26, November.
    7. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    8. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    9. Chen, Ruijun & Tsay, Yaw-Shyan & Zhang, Ting, 2023. "A multi-objective optimization strategy for building carbon emission from the whole life cycle perspective," Energy, Elsevier, vol. 262(PA).
    10. Yan, Kun & Gao, Hanbo & Liu, Rui & Lyu, Yizheng & Wan, Mei & Tian, Jinping & Chen, Lyujun, 2024. "Review on low-carbon development in Chinese industrial parks driven by bioeconomy strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Mastrucci, Alessio & Marvuglia, Antonino & Benetto, Enrico & Leopold, Ulrich, 2020. "A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    12. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    13. Wang, Tao & Seo, Seongwon & Liao, Pin-Chao & Fang, Dongping, 2016. "GHG emission reduction performance of state-of-the-art green buildings: Review of two case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 484-493.
    14. Claudio Favi & Elisa Di Giuseppe & Marco D’Orazio & Marta Rossi & Michele Germani, 2018. "Building Retrofit Measures and Design: A Probabilistic Approach for LCA," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    15. Seunguk Na & Inkwan Paik, 2019. "Reducing Greenhouse Gas Emissions and Costs with the Alternative Structural System for Slab: A Comparative Analysis of South Korea Cases," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    16. Haiyan Duan & Shipei Zhang & Siying Duan & Weicheng Zhang & Zhiyuan Duan & Shuo Wang & Junnian Song & Xian’en Wang, 2019. "Carbon Emissions Peak Prediction and the Reduction Pathway in Buildings during Operation in Jilin Province Based on LEAP," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    17. Rayane de Lima Moura Paiva & Lucas Rosse Caldas & Adriana Paiva de Souza Martins & Patricia Brandão de Sousa & Giulia Fea de Oliveira & Romildo Dias Toledo Filho, 2021. "Thermal-Energy Analysis and Life Cycle GHG Emissions Assessments of Innovative Earth-Based Bamboo Plastering Mortars," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    18. Ru Ji & Shilin Qu, 2019. "Investigation and Evaluation of Energy Consumption Performance for Hospital Buildings in China," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
    19. Wang, Zhaohua & Liu, Qiang & Zhang, Bin, 2022. "What kinds of building energy-saving retrofit projects should be preferred? Efficiency evaluation with three-stage data envelopment analysis (DEA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Tuğçe Demirdelen & İnayet Özge Aksu & Kübra Yilmaz & Duygu Durdu Koç & Miray Arikan & Arif Şener, 2023. "Investigation of the Carbon Footprint of the Textile Industry: PES- and PP-Based Products with Monte Carlo Uncertainty Analysis," Sustainability, MDPI, vol. 15(19), pages 1-22, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:22:y:2018:i:5:p:1105-1116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.