IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p907-d1574288.html
   My bibliography  Save this article

A Framework of Life-Cycle Infrastructure Digitalization for Highway Asset Management

Author

Listed:
  • Yeran Huang

    (Research Institute of Highway Ministry of Transport, Beijing 100088, China
    State Key Lab of Intelligent Transportation System, Beijing 100088, China)

  • Jian Gao

    (Research Institute of Highway Ministry of Transport, Beijing 100088, China
    State Key Lab of Intelligent Transportation System, Beijing 100088, China)

  • Lin Wang

    (Research Institute of Highway Ministry of Transport, Beijing 100088, China
    State Key Lab of Intelligent Transportation System, Beijing 100088, China)

  • Jierui Zhu

    (Research Institute of Highway Ministry of Transport, Beijing 100088, China
    State Key Lab of Intelligent Transportation System, Beijing 100088, China)

  • Wanjun Li

    (Research Institute of Highway Ministry of Transport, Beijing 100088, China
    State Key Lab of Intelligent Transportation System, Beijing 100088, China)

Abstract

With increased highway mileage, various types and quantities of infrastructure are equipped on the roadside to improve traffic safety and efficiency but also encounter difficulty in asset management. The collected data are separately stored with diverse formats, granularity and quality, causing repeated acquisitions and islands of information coherence. The life-cycle interoperability of infrastructure data are required to support life-cycle application scenarios in sustainable development. This paper analyzes 459 papers and 538 survey questionnaires to obtain the literature and practical digital requirements, including unified classification and standardized formats, linkage from separated data sources, support for data analysis across different scenarios, etc. To satisfy these requirements, an infrastructure digitalization framework is proposed, including road infrastructure and other data, data governance, life-cycle data integration, application scenarios, regulations and standards, and performance assessment. The application scenarios involve four categories—design and construction, maintenance, operation, and highway administration—each of which contains four or five scenarios. Then, the data integration approach is first developed with master data identification and determination of data elements for data interoperation between different application scenarios, using a modified data–process matrix, correlation matrix, and evaluation factors. A data relationship model is adopted to present static and dynamic correlations from the multi-source data. Numerical experiments are implemented with two practical highway administration and maintenance systems to demonstrate the effectiveness of the data integration approach. Master data identification and data element determination are applied to guide life-cycle data interoperation.

Suggested Citation

  • Yeran Huang & Jian Gao & Lin Wang & Jierui Zhu & Wanjun Li, 2025. "A Framework of Life-Cycle Infrastructure Digitalization for Highway Asset Management," Sustainability, MDPI, vol. 17(3), pages 1-30, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:907-:d:1574288
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/907/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/907/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elżbieta Macioszek & Anna Granà & Paulo Fernandes & Margarida C. Coelho, 2022. "New Perspectives and Challenges in Traffic and Transportation Engineering Supporting Energy Saving in Smart Cities—A Multidisciplinary Approach to a Global Problem," Energies, MDPI, vol. 15(12), pages 1-8, June.
    2. Anna Pernestål & Albin Engholm & Marie Bemler & Gyözö Gidofalvi, 2020. "How Will Digitalization Change Road Freight Transport? Scenarios Tested in Sweden," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuting Wang & Zhaocheng He & Wangyong Xing & Chengchuang Lin, 2025. "Understanding Congestion Risk and Emissions of Various Travel Behavior Patterns Based on License Plate Recognition Data," Sustainability, MDPI, vol. 17(2), pages 1-22, January.
    2. Julio Henrique Costa Nobrega & Izabela Simon Rampasso & Vasco Sanchez-Rodrigues & Osvaldo Luiz Gonçalves Quelhas & Walter Leal Filho & Milena Pavan Serafim & Rosley Anholon, 2021. "Logistics 4.0 in Brazil: Critical Analysis and Relationships with SDG 9 Targets," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    3. Ioana Popescu & Camelia Teau & Cristian Moisescu-Ciocan & Constantin Florescu & Relu Adam & Albert Titus Constantin, 2024. "Evaluating the Sustainability of Longtime Operating Infrastructure for Romanian Flood Risk Protection," Sustainability, MDPI, vol. 16(23), pages 1-19, December.
    4. Milan Dedík & Martin Kendra & Matúš Senci & Daniel Pribula & Martin Vojtek, 2024. "Progressive Methods of the Harmfulness Evaluation of Transport in Terms of Emission Production," Sustainability, MDPI, vol. 16(23), pages 1-24, November.
    5. Muhammad Adeel & Biao Wang & Ji Ke & Israel Muaka Mvitu, 2024. "The Nonlinear Dynamics of CO 2 Emissions in Pakistan: A Comprehensive Analysis of Transportation, Electricity Consumption, and Foreign Direct Investment," Sustainability, MDPI, vol. 17(1), pages 1-26, December.
    6. Hang Nguyen Thi Bich & Thuc Le Dinh, 2024. "Overcoming Barriers to Sustainable Green Transportation in Ho Chi Minh City: A Pathway Toward Achieving SDGs 11 and 13," Sustainability, MDPI, vol. 16(23), pages 1-20, December.
    7. Bander Fahad Alkrides, 2025. "Promoting Sustainable Urban Walkability: A Modified Delphi Study on Key Indicators for Urban Walkability in Gulf Cooperation Council Urban Streets," Sustainability, MDPI, vol. 17(3), pages 1-34, February.
    8. Tomasz Rokicki & Piotr Bórawski & Aneta Bełdycka-Bórawska & András Szeberényi & Aleksandra Perkowska, 2022. "Changes in Logistics Activities in Poland as a Result of the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    9. Ragosebo Kgaugelo Modise & Khumbulani Mpofu & Tshifhiwa Nenzhelele & Olukorede Tijani Adenuga, 2025. "Enhancing Energy Consumption in Automotive Component Manufacturing: A Hybrid Autoregressive Integrated Moving Average–Long Short-Term Memory Prediction Model," Sustainability, MDPI, vol. 17(4), pages 1-19, February.
    10. Bárbara Ferreira & João Reis, 2023. "A Systematic Literature Review on the Application of Automation in Logistics," Logistics, MDPI, vol. 7(4), pages 1-17, November.
    11. Leonor Teixeira & Ana Luísa Ramos & Carolina Costa & Dulce Pedrosa & César Faria & Carina Pimentel, 2023. "SOLFI: An Integrated Platform for Sustainable Urban Last-Mile Logistics’ Operations—Study, Design and Development," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
    12. Yanni Liang & Jianxin You & Ran Wang & Bo Qin & Shuo Han, 2024. "Urban Transportation Data Research Overview: A Bibliometric Analysis Based on CiteSpace," Sustainability, MDPI, vol. 16(22), pages 1-45, November.
    13. Lu Liu & Caihong Li & Yi Yang & Jianzhou Wang, 2024. "Short-Term Traffic Flow Forecasting Based on a Novel Combined Model," Sustainability, MDPI, vol. 16(23), pages 1-25, November.
    14. Engholm, Albin & Kristoffersson, Ida & Pernestal, Anna, 2021. "Impacts of large-scale driverless truck adoption on the freight transport system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 227-254.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:907-:d:1574288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.