IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v148y2019ics0040162518312666.html
   My bibliography  Save this article

The impact of autonomous trucks on business models in the automotive and logistics industry–a Delphi-based scenario study

Author

Listed:
  • Fritschy, Carolin
  • Spinler, Stefan

Abstract

The objective of this paper is to explore the impact of autonomous trucks on business models in the automotive and logistics industry. A Delphi-based scenario study for the year 2040 was conducted, resulting via fuzzy clustering in the identification of three meaningful futures we refer to as cooperation and partnerships, OEM's business model under attack and OEM's position degraded. There is consensus among the experts that cooperation among logistics service companies, original equipment manufacturer, and tier 1 suppliers will be a key lever that enables innovative business models. Business models structured around offering holistic systems for automated driving will be the future. Stakeholders, i.e. truck manufacturers, suppliers, and logistics companies, should be aware that neglecting to invest in autonomous technologies might have serious consequences in the long-term. The scenarios developed in this paper provide guidance for the automotive and logistics industries in terms of adoption of autonomous driving technology and adaption of business models.

Suggested Citation

  • Fritschy, Carolin & Spinler, Stefan, 2019. "The impact of autonomous trucks on business models in the automotive and logistics industry–a Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:tefoso:v:148:y:2019:i:c:s0040162518312666
    DOI: 10.1016/j.techfore.2019.119736
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162518312666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2019.119736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Merfeld, Katrin & Wilhelms, Mark-Philipp & Henkel, Sven & Kreutzer, Karin, 2019. "Carsharing with shared autonomous vehicles: Uncovering drivers, barriers and future developments – A four-stage Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 66-81.
    2. Micha Hirschinger & Alexander Spickermann & Evi Hartmann & Heiko Gracht & Inga-Lena Darkow, 2015. "The Future of Logistics in Emerging Markets—Fuzzy Clustering Scenarios Grounded in Institutional and Factor-Market Rivalry Theory," Journal of Supply Chain Management, Institute for Supply Management, vol. 51(4), pages 73-93, October.
    3. Skeete, Jean-Paul, 2018. "Level 5 autonomy: The new face of disruption in road transport," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 22-34.
    4. Warth, Johannes & von der Gracht, Heiko A. & Darkow, Inga-Lena, 2013. "A dissent-based approach for multi-stakeholder scenario development — The future of electric drive vehicles," Technological Forecasting and Social Change, Elsevier, vol. 80(4), pages 566-583.
    5. Melander, Lisa & Dubois, Anna & Hedvall, Klas & Lind, Frida, 2019. "Future goods transport in Sweden 2050: Using a Delphi-based scenario analysis," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 178-189.
    6. Paul Goodwin & George Wright, 2001. "Enhancing Strategy Evaluation in Scenario Planning: a Role for Decision Analysis," Journal of Management Studies, Wiley Blackwell, vol. 38(1), pages 1-16, January.
    7. Jiang, Ruth & Kleer, Robin & Piller, Frank T., 2017. "Predicting the future of additive manufacturing: A Delphi study on economic and societal implications of 3D printing for 2030," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 84-97.
    8. Bokrantz, Jon & Skoogh, Anders & Berlin, Cecilia & Stahre, Johan, 2017. "Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030," International Journal of Production Economics, Elsevier, vol. 191(C), pages 154-169.
    9. Spickermann, Alexander & Zimmermann, Martin & von der Gracht, Heiko A., 2014. "Surface- and deep-level diversity in panel selection — Exploring diversity effects on response behaviour in foresight," Technological Forecasting and Social Change, Elsevier, vol. 85(C), pages 105-120.
    10. von der Gracht, Heiko A. & Darkow, Inga-Lena, 2010. "Scenarios for the logistics services industry: A Delphi-based analysis for 2025," International Journal of Production Economics, Elsevier, vol. 127(1), pages 46-59, September.
    11. Winkler, Jens & Moser, Roger, 2016. "Biases in future-oriented Delphi studies: A cognitive perspective," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 63-76.
    12. Rowe, Gene & Wright, George, 1999. "The Delphi technique as a forecasting tool: issues and analysis," International Journal of Forecasting, Elsevier, vol. 15(4), pages 353-375, October.
    13. von der Gracht, Heiko A., 2012. "Consensus measurement in Delphi studies," Technological Forecasting and Social Change, Elsevier, vol. 79(8), pages 1525-1536.
    14. Schuckmann, Steffen W. & Gnatzy, Tobias & Darkow, Inga-Lena & von der Gracht, Heiko A., 2012. "Analysis of factors influencing the development of transport infrastructure until the year 2030 — A Delphi based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 79(8), pages 1373-1387.
    15. Norman Dalkey & Olaf Helmer, 1963. "An Experimental Application of the DELPHI Method to the Use of Experts," Management Science, INFORMS, vol. 9(3), pages 458-467, April.
    16. Wright, George & Goodwin, Paul, 2009. "Decision making and planning under low levels of predictability: Enhancing the scenario method," International Journal of Forecasting, Elsevier, vol. 25(4), pages 813-825, October.
    17. Sabrina Schneider & Patrick Spieth, 2013. "Business Model Innovation: Towards An Integrated Future Research Agenda," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 1-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingmont, Derek N.J. & Alexiou, Andreas, 2020. "The contingent effect of job automating technology awareness on perceived job insecurity: Exploring the moderating role of organizational culture," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    2. Gebhardt, Maximilian & Spieske, Alexander & Kopyto, Matthias & Birkel, Hendrik, 2022. "Increasing global supply chains’ resilience after the COVID-19 pandemic: Empirical results from a Delphi study," Journal of Business Research, Elsevier, vol. 150(C), pages 59-72.
    3. Rezaei, Mojtaba & Jafari-Sadeghi, Vahid & Cao, Dongmei & Mahdiraji, Hannan Amoozad, 2021. "Key indicators of ethical challenges in digital healthcare: A combined Delphi exploration and confirmative factor analysis approach with evidence from Khorasan province in Iran," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    4. Eunbin Kim & Youngrim Kim & Jieun Park, 2022. "The Necessity of Introducing Autonomous Trucks in Logistics 4.0," Sustainability, MDPI, vol. 14(7), pages 1-10, March.
    5. Di Zio, Simone & Bolzan, Mario & Marozzi, Marco, 2021. "Classification of Delphi outputs through robust ranking and fuzzy clustering for Delphi-based scenarios," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    6. Kishore Bhoopalam, A. & van den Berg, R. & Agatz, N.A.H. & Chorus, C.G., 2021. "The long road to automated trucking: Insights from driver focus groups," ERIM Report Series Research in Management ERS-2021-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Büchel, Hendrik & Spinler, Stefan, 2024. "The impact of the metaverse on e-commerce business models – A delphi-based scenario study," Technology in Society, Elsevier, vol. 76(C).
    8. Su, Yu-Shan & Huang, Hsini & Daim, Tugrul & Chien, Pan-Wei & Peng, Ru-Ling & Karaman Akgul, Arzu, 2023. "Assessing the technological trajectory of 5G-V2X autonomous driving inventions: Use of patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    9. Peppel, Marcel & Ringbeck, Jürgen & Spinler, Stefan, 2022. "How will last-mile delivery be shaped in 2040? A Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    10. Bootz, Jean-Philippe & Michel, Sophie & Pallud, Jessie & Monti, Régine, 2022. "Possible changes of Industry 4.0 in 2030 in the face of uberization: Results of a participatory and systemic foresight study," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    11. Engholm, Albin & Kristoffersson, Ida & Pernestal, Anna, 2021. "Impacts of large-scale driverless truck adoption on the freight transport system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 227-254.
    12. Talebian, Ahmadreza & Mishra, Sabyasachee, 2022. "Unfolding the state of the adoption of connected autonomous trucks by the commercial fleet owner industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    13. Anna Pernestål & Albin Engholm & Marie Bemler & Gyözö Gidofalvi, 2020. "How Will Digitalization Change Road Freight Transport? Scenarios Tested in Sweden," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    14. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2023. "Industry 5.0 and Triple Bottom Line Approach in Supply Chain Management: The State-of-the-Art," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    15. Stefan Catana & Sorin-George Toma, 2021. "Marketing Mix And Corporate Social Responsability In Automotive Industry – Case Study: Mazda Motor Corporation," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 1, pages 205-209, February.
    16. Meisam Ranjbari & Zahra Shams Esfandabadi & Simone Domenico Scagnelli & Peer-Olaf Siebers & Francesco Quatraro, 2021. "Recovery agenda for sustainable development post COVID-19 at the country level: developing a fuzzy action priority surface," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16646-16673, November.
    17. Sindi, Safaa & Woodman, Roger, 2021. "Implementing commercial autonomous road haulage in freight operations: An industry perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 235-253.
    18. Kopyto, Matthias & Lechler, Sabrina & von der Gracht, Heiko A. & Hartmann, Evi, 2020. "Potentials of blockchain technology in supply chain management: Long-term judgments of an international expert panel," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    19. Gebhardt, Maximilian & Spieske, Alexander & Birkel, Hendrik, 2022. "The future of the circular economy and its effect on supply chain dependencies: Empirical evidence from a Delphi study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    20. Seddigh, Mohammad Reza & Targholizadeh, Aida & Shokouhyar, Sajjad & Shokoohyar, Sina, 2023. "Social media and expert analysis cast light on the mechanisms of underlying problems in pharmaceutical supply chain: An exploratory approach," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    21. Shoukohyar, Sajjad & Seddigh, Mohammad Reza, 2020. "Uncovering the dark and bright sides of implementing collaborative forecasting throughout sustainable supply chains: An exploratory approach," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    22. Marcon, Érico & Le Dain, Marie-Anne & Frank, Alejandro G., 2022. "Designing business models for Industry 4.0 technologies provision: Changes in business dimensions through digital transformation," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    23. Pauget, Bertrand & Tobelem, Jean-Michel & Bootz, Jean-Philippe, 2021. "The future of French museums in 2030," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    24. Leminen, Seppo & Rajahonka, Mervi & Wendelin, Robert & Westerlund, Mika & Nyström, Anna-Greta, 2022. "Autonomous vehicle solutions and their digital servitization business models," Technological Forecasting and Social Change, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peppel, Marcel & Ringbeck, Jürgen & Spinler, Stefan, 2022. "How will last-mile delivery be shaped in 2040? A Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    2. Tiberius, Victor & Gojowy, Robin & Dabić, Marina, 2022. "Forecasting the future of robo advisory: A three-stage Delphi study on economic, technological, and societal implications," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    3. Kopyto, Matthias & Lechler, Sabrina & von der Gracht, Heiko A. & Hartmann, Evi, 2020. "Potentials of blockchain technology in supply chain management: Long-term judgments of an international expert panel," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    4. Roßmann, Bernhard & Canzaniello, Angelo & von der Gracht, Heiko & Hartmann, Evi, 2018. "The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 135-149.
    5. Merfeld, Katrin & Wilhelms, Mark-Philipp & Henkel, Sven & Kreutzer, Karin, 2019. "Carsharing with shared autonomous vehicles: Uncovering drivers, barriers and future developments – A four-stage Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 66-81.
    6. Di Zio, Simone & Bolzan, Mario & Marozzi, Marco, 2021. "Classification of Delphi outputs through robust ranking and fuzzy clustering for Delphi-based scenarios," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    7. Frevel, Nicolas & Beiderbeck, Daniel & Schmidt, Sascha L., 2022. "The impact of technology on sports – A prospective study," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    8. Förster, Bernadette & von der Gracht, Heiko, 2014. "Assessing Delphi panel composition for strategic foresight — A comparison of panels based on company-internal and external participants," Technological Forecasting and Social Change, Elsevier, vol. 84(C), pages 215-229.
    9. Gebhardt, Maximilian & Spieske, Alexander & Birkel, Hendrik, 2022. "The future of the circular economy and its effect on supply chain dependencies: Empirical evidence from a Delphi study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    10. Bokrantz, Jon & Skoogh, Anders & Berlin, Cecilia & Stahre, Johan, 2017. "Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030," International Journal of Production Economics, Elsevier, vol. 191(C), pages 154-169.
    11. Belton, Ian & MacDonald, Alice & Wright, George & Hamlin, Iain, 2019. "Improving the practical application of the Delphi method in group-based judgment: A six-step prescription for a well-founded and defensible process," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 72-82.
    12. Geissler, Dominik & Beiderbeck, Daniel & Schmidt, Sascha L. & Schreyer, Dominik, 2024. "Emerging technologies and shifting consumer motives: Projecting the future of the top-tier sports media product," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    13. Engelke, Henning & Mauksch, Stefanie & Darkow, Inga-Lena & von der Gracht, Heiko A., 2015. "Opportunities for social enterprise in Germany — Evidence from an expert survey," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 635-646.
    14. Culot, Giovanna & Orzes, Guido & Sartor, Marco & Nassimbeni, Guido, 2020. "The future of manufacturing: A Delphi-based scenario analysis on Industry 4.0," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    15. Büchel, Hendrik & Spinler, Stefan, 2024. "The impact of the metaverse on e-commerce business models – A delphi-based scenario study," Technology in Society, Elsevier, vol. 76(C).
    16. Beiderbeck, Daniel & Evans, Nicolas & Frevel, Nicolas & Schmidt, Sascha L., 2023. "The impact of technology on the future of football – A global Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    17. Schlecht, Laura & Schneider, Sabrina & Buchwald, Arne, 2021. "The prospective value creation potential of Blockchain in business models: A delphi study," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    18. Beiderbeck, Daniel & Frevel, Nicolas & von der Gracht, Heiko A. & Schmidt, Sascha L. & Schweitzer, Vera M., 2021. "The impact of COVID-19 on the European football ecosystem – A Delphi-based scenario analysis," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    19. Meissner, Philip & Brands, Christian & Wulf, Torsten, 2017. "Quantifiying blind spots and weak signals in executive judgment: A structured integration of expert judgment into the scenario development process," International Journal of Forecasting, Elsevier, vol. 33(1), pages 244-253.
    20. Christoph Markmann & Alexander Spickermann & Heiko A. von der Gracht & Alexander Brem, 2021. "Improving the question formulation in Delphi‐like surveys: Analysis of the effects of abstract language and amount of information on response behavior," Futures & Foresight Science, John Wiley & Sons, vol. 3(1), March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:148:y:2019:i:c:s0040162518312666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.