IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2457-d335012.html
   My bibliography  Save this article

The Impact of Socio-Economic Factors on Sediment Load: A Case Study of the Yanhe River Watershed

Author

Listed:
  • Xue Zhong

    (Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China)

  • Xiaohui Jiang

    (Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China)

  • Leilei Li

    (Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China)

  • Jing Xu

    (Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China)

  • Huanyu Xu

    (Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China)

Abstract

Under the influence of climate change and human activities, sediment load in rivers has changed significantly, which has a profound impact on the stability of ecosystems and the sustainable development of human beings. Taking the Yanhe River watershed as a case, this paper expounds the dynamic relationship among the Grain for Green Project, social and economic development, population migration, and sediment transport. The variability of sediment load was detected by Pettitt test, the double cumulative curve method, and the regression analysis method, and the effects of climate and human activities on sediment load were quantitatively analyzed. The results showed that 1) from 1956 to 2016, the precipitation of Yanhe River watershed rose slightly in the past 10 years, but the sediment load decreased significantly; 1996 was identified as the catastrophic year of the study period, when the contribution of climate change and human activity to reduced sediment load was 14.1% and 85.9%, respectively. 2) The Grain for Green Project increased the vegetation coverage of the study area from 40.6% to 78.5%. 3) The proportion of agricultural GDP in total GDP decreased from 52.26% to 7.3%, and the proportion of agricultural GDP was positively correlated with sediment transport and cultivated land area (p < 0.01). 4) Population migration resulted in the urbanization rate reaching 40.23%, and the urbanization rate is negatively correlated with sediment load and cultivated land area (p < 0.01), while the cultivated land area is positively correlated with sediment load (p < 0.01). The decrease of cultivated land area makes the sediment load gradually decrease. Therefore, socio-economic factors promote the sustainable development of the river basin.

Suggested Citation

  • Xue Zhong & Xiaohui Jiang & Leilei Li & Jing Xu & Huanyu Xu, 2020. "The Impact of Socio-Economic Factors on Sediment Load: A Case Study of the Yanhe River Watershed," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2457-:d:335012
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2457/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen E. Darby & Christopher R. Hackney & Julian Leyland & Matti Kummu & Hannu Lauri & Daniel R. Parsons & James L. Best & Andrew P. Nicholas & Rolf Aalto, 2016. "Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity," Nature, Nature, vol. 539(7628), pages 276-279, November.
    2. Liu, Wei Min & Luk, Maria K.R., 2009. "Reform and opening up: Way to the sustainable and harmonious development of air transport in China," Transport Policy, Elsevier, vol. 16(5), pages 215-223, September.
    3. Liu, Chang-An & Li, Feng-Rui & Zhou, Li-Min & Zhang, Rong-He & Yu-Jia, & Lin, Shi-Ling & Wang, Li-Jun & Siddique, Kadambot H.M. & Li, Feng-Min, 2013. "Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 117(C), pages 123-132.
    4. Depeng Zuo & Zongxue Xu & Wei Wu & Jie Zhao & Fangfang Zhao, 2014. "Identification of Streamflow Response to Climate Change and Human Activities in the Wei River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 833-851, February.
    5. A. N. Pettitt, 1979. "A Non‐Parametric Approach to the Change‐Point Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 126-135, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangming Tan & Shasha Han & Yuecong Yu & Rui Hu & Yiwei Lv & Caiwen Shu, 2021. "Impact of Social and Economic Development on Sediment Load of the Yellow River," Sustainability, MDPI, vol. 13(14), pages 1-12, July.
    2. Petr Pelikán & Věra Hubačíková & Tatiana Kaletová & Jakub Fuska, 2020. "Comparative Assessment of Different Modelling Schemes and Their Applicability to Inland Small Reservoirs: A Central Europe Case Study," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    3. Sanja Manojlović & Mikica Sibinović & Tanja Srejić & Abosa Hadud & Ibrahim Sabri, 2021. "Agriculture Land Use Change and Demographic Change in Response to Decline Suspended Sediment in Južna Morava River Basin (Serbia)," Sustainability, MDPI, vol. 13(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chesheng Zhan & Sidong Zeng & Shanshan Jiang & Huixiao Wang & Wen Ye, 2014. "An Integrated Approach for Partitioning the Effect of Climate Change and Human Activities on Surface Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3843-3858, September.
    2. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    3. Stephen J. Déry & Marco A. Hernández-Henríquez & Tricia A. Stadnyk & Tara J. Troy, 2021. "Vanishing weekly hydropeaking cycles in American and Canadian rivers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Qiying Zhang & Panpan Xu & Hui Qian, 2019. "Assessment of Groundwater Quality and Human Health Risk (HHR) Evaluation of Nitrate in the Central-Western Guanzhong Basin, China," IJERPH, MDPI, vol. 16(21), pages 1-16, November.
    5. Mohamed Allam & Emanuele Radicetti & Valentina Quintarelli & Verdiana Petroselli & Sara Marinari & Roberto Mancinelli, 2022. "Influence of Organic and Mineral Fertilizers on Soil Organic Carbon and Crop Productivity under Different Tillage Systems: A Meta-Analysis," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    6. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    7. Gong, Qiang & Wang, Kun & Fan, Xingli & Fu, Xiaowen & Xiao, Yi-bin, 2018. "International trade drivers and freight network analysis - The case of the Chinese air cargo sector," Journal of Transport Geography, Elsevier, vol. 71(C), pages 253-262.
    8. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    9. Alina Bărbulescu & Cristian Ștefan Dumitriu, 2021. "On the Connection between the GEP Performances and the Time Series Properties," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    10. Alfredas Račkauskas & Martin Wendler, 2020. "Convergence of U-processes in Hölder spaces with application to robust detection of a changed segment," Statistical Papers, Springer, vol. 61(4), pages 1409-1435, August.
    11. Hsin-Yu Chen & Yu-Hsiang Hsu & Chia-Chi Huang & Hsin-Fu Yeh, 2023. "Baseflow Variation in Southern Taiwan Basin," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    12. Catherine Araujo Bonjean & Alioune N’diaye & Olivier Santoni, 2019. "Who benefits from the return of the rains? The case of the Ferlo breeders in Senegal [A qui profite le retour des pluies ? Le cas des éleveurs du Ferlo]," CERDI Working papers halshs-02419601, HAL.
    13. Wang, Shulan & Wang, Hao & Zhang, Yuanhong & Wang, Rui & Zhang, Yujiao & Xu, Zonggui & Jia, Guangcan & Wang, Xiaoli & Li, Jun, 2018. "The influence of rotational tillage on soil water storage, water use efficiency and maize yield in semi-arid areas under varied rainfall conditions," Agricultural Water Management, Elsevier, vol. 203(C), pages 376-384.
    14. Andreea Marin-Pantelescu, 2016. "The Pricing Evolution in the Air Transportation Industry. Implication for the Romanian Tourism Sector in the Era of Globalization," Academic Journal of Economic Studies, Faculty of Finance, Banking and Accountancy Bucharest,"Dimitrie Cantemir" Christian University Bucharest, vol. 2(2), pages 88-99, June.
    15. Roquia Salam & Abu Reza Md. Towfiqul Islam & Shakibul Islam, 2020. "Spatiotemporal distribution and prediction of groundwater level linked to ENSO teleconnection indices in the northwestern region of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4509-4535, June.
    16. Jing Xu & Ping Zhao & Johnny C. L. Chan & Mingyuan Shi & Chi Yang & Siyu Zhao & Ying Xu & Junming Chen & Ling Du & Jie Wu & Jiaxin Ye & Rui Xing & Huimei Wang & Lu Liu, 2024. "Increasing tropical cyclone intensity in the western North Pacific partly driven by warming Tibetan Plateau," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Sanghyuk Yoo & Sangyong Jeon & Seunghwan Jeong & Heesoo Lee & Hosun Ryou & Taehyun Park & Yeonji Choi & Kyongjoo Oh, 2021. "Prediction of the Change Points in Stock Markets Using DAE-LSTM," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    18. Uilson Ricardo Venâncio Aires & Demetrius David Silva & Michel Castro Moreira & Carlos Antônio Alvares Soares Ribeiro & Celso Bandeira de Melo Ribeiro, 2020. "The Use of the Normalized Difference Vegetation Index to Analyze the Influence of Vegetation Cover Changes on the Streamflow in the Manhuaçu River Basin, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1933-1949, April.
    19. Joseph Ngatchou-Wandji & Echarif Elharfaoui & Michel Harel, 2022. "On change-points tests based on two-samples U-Statistics for weakly dependent observations," Statistical Papers, Springer, vol. 63(1), pages 287-316, February.
    20. Hsin-Yu Chen & Chia-Chi Huang & Hsin-Fu Yeh, 2021. "Quantifying the Relative Contribution of the Climate Change and Human Activity on Runoff in the Choshui River Alluvial Fan, Taiwan," Land, MDPI, vol. 10(8), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2457-:d:335012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.