IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p2118-d330439.html
   My bibliography  Save this article

Ironmaking and Steelmaking Slags as Sustainable Adsorbents for Industrial Effluents and Wastewater Treatment: A Critical Review of Properties, Performance, Challenges and Opportunities

Author

Listed:
  • James Manchisi

    (School of Chemical & Metallurgical Engineering, University of Witwatersrand, Johannesburg 2050, South Africa
    School of Mines, University of Zambia, Lusaka 32379, Zambia)

  • Elias Matinde

    (School of Chemical & Metallurgical Engineering, University of Witwatersrand, Johannesburg 2050, South Africa
    Pyrometallurgy Division, MINTEK, Praegville, Johannesburg 2125, South Africa)

  • Neil A. Rowson

    (School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Mark J. H. Simmons

    (School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Geoffrey S. Simate

    (School of Chemical & Metallurgical Engineering, University of Witwatersrand, Johannesburg 2050, South Africa)

  • Sehliselo Ndlovu

    (School of Chemical & Metallurgical Engineering, University of Witwatersrand, Johannesburg 2050, South Africa
    DST/NRF SARChI: Hydrometallurgy and Sustainable Development, School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg 2050, South Africa)

  • Brian Mwewa

    (School of Chemical & Metallurgical Engineering, University of Witwatersrand, Johannesburg 2050, South Africa
    DST/NRF SARChI: Hydrometallurgy and Sustainable Development, School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg 2050, South Africa)

Abstract

This paper critically discusses the structure, properties and applications of ironmaking and steelmaking slags and their silicate-based variants as low-cost adsorbents for removing cations and anions from industrial effluents and wastewater. Undoubtedly, the performance of slag-based adsorbents depends on their physical, chemical and phase chemical properties. The presence of crystalline phases, for example, has a significant effect on the adsorption capacity. However, despite their low cost and ubiquity, their chemical and geometric heterogeneity significantly affects the performance and applications of slag-based adsorbents. These challenges notwithstanding, the efficacy of slag-based adsorbents can be significantly enhanced through purposeful activation to increase the specific surface area and density of adsorption sites on the surfaces of adsorbent particles. The synthesis of functionalised adsorbents such as geopolymers, zeolites and layered double hydroxides from silicate and aluminosilicate precursors can also significantly increase the performance of slag-based adsorbents. In addition, the ability to stabilise the dissolved and/or entrained toxic metal species in stable phases in slags, either through controlled post-process fluxing or crystallisation, can significantly enhance the environmental performance of slag-based adsorbents. Most critical in the design of future slag-based adsorbents is the integration of the engineered properties of molten and solidified slags to the recovery and stabilisation of dissolved and/or entrained metals.

Suggested Citation

  • James Manchisi & Elias Matinde & Neil A. Rowson & Mark J. H. Simmons & Geoffrey S. Simate & Sehliselo Ndlovu & Brian Mwewa, 2020. "Ironmaking and Steelmaking Slags as Sustainable Adsorbents for Industrial Effluents and Wastewater Treatment: A Critical Review of Properties, Performance, Challenges and Opportunities," Sustainability, MDPI, vol. 12(5), pages 1-47, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2118-:d:330439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/2118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/2118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barati, M. & Esfahani, S. & Utigard, T.A., 2011. "Energy recovery from high temperature slags," Energy, Elsevier, vol. 36(9), pages 5440-5449.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Yang & Yuegang Tang & Duanning Cao & Mingyuan Yang, 2023. "Remediation of Acid Mine Drainage (AMD) Using Steel Slag: Mechanism of the Alkalinity Decayed Process," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    2. Maja Radziemska & Justyna Dzięcioł & Zygmunt M. Gusiatin & Agnieszka Bęś & Wojciech Sas & Andrzej Głuchowski & Beata Gawryszewska & Zbigniew Mazur & Martin Brtnicky, 2021. "Recycling of Blast Furnace and Coal Slags in Aided Phytostabilisation of Soils Highly Polluted with Heavy Metals," Energies, MDPI, vol. 14(14), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yongqi & Shen, Hongwei & Wang, Hao & Wang, Xidong & Zhang, Zuotai, 2014. "Experimental investigation and modeling of cooling processes of high temperature slags," Energy, Elsevier, vol. 76(C), pages 761-767.
    2. Shen, Chong & Zhang, Maoyong & Li, Xianting, 2017. "Experimental investigation on the thermal performance of cooling pipes embedded in a graphitization furnace," Energy, Elsevier, vol. 121(C), pages 55-65.
    3. Yongqi Sun & Zuotai Zhang & Lili Liu & Xidong Wang, 2015. "Heat Recovery from High Temperature Slags: A Review of Chemical Methods," Energies, MDPI, vol. 8(3), pages 1-19, March.
    4. Ishaq, H. & Dincer, I., 2019. "Exergy analysis and performance evaluation of a newly developed integrated energy system for quenchable generation," Energy, Elsevier, vol. 179(C), pages 1191-1204.
    5. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    6. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    7. Yang, Sheng & Yang, Siyu & Wang, Yifan & Qian, Yu, 2017. "Low grade waste heat recovery with a novel cascade absorption heat transformer," Energy, Elsevier, vol. 130(C), pages 461-472.
    8. Pashchenko, Dmitry, 2019. "Pressure drop in the thermochemical recuperators filled with the catalysts of various shapes: A combined experimental and numerical investigation," Energy, Elsevier, vol. 166(C), pages 462-470.
    9. Tan, Yu & Wang, Hong & Zhu, Xun & Lv, Yi-Wen & Ding, Yu-Dong & Liao, Qiang, 2020. "Film fragmentation mode: The most suitable way for centrifugal granulation of large flow rate molten blast slag towards high-efficiency waste heat recovery for industrialization," Applied Energy, Elsevier, vol. 276(C).
    10. Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2017. "Thermodynamic potential of molten copper oxide for high temperature solar energy storage and oxygen production," Applied Energy, Elsevier, vol. 201(C), pages 69-83.
    11. Dong, Huijuan & Ohnishi, Satoshi & Fujita, Tsuyoshi & Geng, Yong & Fujii, Minoru & Dong, Liang, 2014. "Achieving carbon emission reduction through industrial & urban symbiosis: A case of Kawasaki," Energy, Elsevier, vol. 64(C), pages 277-286.
    12. Sarafraz, M.M. & Jafarian, M. & Arjomandi, M. & Nathan, G.J., 2017. "Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment," Applied Energy, Elsevier, vol. 195(C), pages 702-712.
    13. Sun, Yongqi & Seetharaman, Seshadri & Liu, Qianyi & Zhang, Zuotai & Liu, Lili & Wang, Xidong, 2016. "Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases," Energy, Elsevier, vol. 114(C), pages 165-176.
    14. Duan, Wenjun & Yu, Qingbo & Wang, Zhimei & Liu, Junxiang & Qin, Qin, 2018. "Life cycle and economic assessment of multi-stage blast furnace slag waste heat recovery system," Energy, Elsevier, vol. 142(C), pages 486-495.
    15. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    16. Zhang, Hui & Wang, Hong & Zhu, Xun & Qiu, Yong-Jun & Li, Kai & Chen, Rong & Liao, Qiang, 2013. "A review of waste heat recovery technologies towards molten slag in steel industry," Applied Energy, Elsevier, vol. 112(C), pages 956-966.
    17. Popov, S.K. & Svistunov, I.N. & Garyaev, A.B. & Serikov, E.A. & Temyrkanova, E.K., 2017. "The use of thermochemical recuperation in an industrial plant," Energy, Elsevier, vol. 127(C), pages 44-51.
    18. Park, K. & Lee, G.W., 2013. "Fabrication and thermoelectric power of π-shaped Ca3Co4O9/CaMnO3 modules for renewable energy conversion," Energy, Elsevier, vol. 60(C), pages 87-93.
    19. Mariusz Tańczuk & Maciej Masiukiewicz & Stanisław Anweiler & Robert Junga, 2018. "Technical Aspects and Energy Effects of Waste Heat Recovery from District Heating Boiler Slag," Energies, MDPI, vol. 11(4), pages 1-19, March.
    20. Yang, Sheng & Qian, Yu & Wang, Yifan & Yang, Siyu, 2017. "A novel cascade absorption heat transformer process using low grade waste heat and its application to coal to synthetic natural gas," Applied Energy, Elsevier, vol. 202(C), pages 42-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2118-:d:330439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.