IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p796-d138817.html
   My bibliography  Save this article

Technical Aspects and Energy Effects of Waste Heat Recovery from District Heating Boiler Slag

Author

Listed:
  • Mariusz Tańczuk

    (Faculty of Mechanical Engineering, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland)

  • Maciej Masiukiewicz

    (Faculty of Mechanical Engineering, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland)

  • Stanisław Anweiler

    (Faculty of Mechanical Engineering, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland)

  • Robert Junga

    (Faculty of Mechanical Engineering, Opole University of Technology, ul. Mikołajczyka 5, 45-271 Opole, Poland)

Abstract

Coal continues to dominate in the structure of the heat production system in some European countries. Coal-fired boilers in district heating and power generation systems are accompanied by the formation of large quantities of slag and ash. Due to considerable high temperature, slag may be used as a source of waste energy. In this study, the technical possibilities of recovery slag’s physical enthalpy from grate-fired district heating boiler of 45 MW thermal capacity are analyzed. The aim of the work is to estimate the waste energy potential of the slag in analyzed boiler and proposition of the heat recovery system. The construction and design of the existing deslagging system was examined. Studies have shown that high water temperature accelerates system wear. Recovering heat from this system decreases the water temperature, which extends the trouble-free working time. The slag parameters were determined, including the temperature at the outlet of the boiler and the temperature after leaving the slag water tub. The annual amount of heat regenerative potential was estimated. On the basis of the research, the authors propose a waste heat recovery facility with high temperature R134a heat pump system. The result of the conducted research is that the proposed heat pump provides energy savings that are worth considering by recovering from 58.8% to 88.0% of energy slag potential.

Suggested Citation

  • Mariusz Tańczuk & Maciej Masiukiewicz & Stanisław Anweiler & Robert Junga, 2018. "Technical Aspects and Energy Effects of Waste Heat Recovery from District Heating Boiler Slag," Energies, MDPI, vol. 11(4), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:796-:d:138817
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/796/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/796/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nemet, Andreja & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2013. "Optimising entire lifetime economy of heat exchanger networks," Energy, Elsevier, vol. 57(C), pages 222-235.
    2. Barati, M. & Esfahani, S. & Utigard, T.A., 2011. "Energy recovery from high temperature slags," Energy, Elsevier, vol. 36(9), pages 5440-5449.
    3. Chae, Song Hwa & Kim, Sang Hun & Yoon, Sung-Geun & Park, Sunwon, 2010. "Optimization of a waste heat utilization network in an eco-industrial park," Applied Energy, Elsevier, vol. 87(6), pages 1978-1988, June.
    4. Sun, Yongqi & Shen, Hongwei & Wang, Hao & Wang, Xidong & Zhang, Zuotai, 2014. "Experimental investigation and modeling of cooling processes of high temperature slags," Energy, Elsevier, vol. 76(C), pages 761-767.
    5. Stijepovic, Mirko Z. & Linke, Patrick, 2011. "Optimal waste heat recovery and reuse in industrial zones," Energy, Elsevier, vol. 36(7), pages 4019-4031.
    6. Zhang, Hui & Wang, Hong & Zhu, Xun & Qiu, Yong-Jun & Li, Kai & Chen, Rong & Liao, Qiang, 2013. "A review of waste heat recovery technologies towards molten slag in steel industry," Applied Energy, Elsevier, vol. 112(C), pages 956-966.
    7. Bisio, G., 1997. "Energy recovery from molten slag and exploitation of the recovered energy," Energy, Elsevier, vol. 22(5), pages 501-509.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Darko Goričanec & Igor Ivanovski & Jurij Krope & Danijela Urbancl, 2020. "The Exploitation of Low-Temperature Hot Water Boiler Sources with High-Temperature Heat Pump Integration," Energies, MDPI, vol. 13(23), pages 1-12, November.
    2. Junga, Robert & Pospolita, Janusz & Niemiec, Patrycja, 2020. "Combustion and grindability characteristics of palm kernel shells torrefied in a pilot-scale installation," Renewable Energy, Elsevier, vol. 147(P1), pages 1239-1250.
    3. Mariusz Tańczuk & Robert Junga & Alicja Kolasa-Więcek & Patrycja Niemiec, 2019. "Assessment of the Energy Potential of Chicken Manure in Poland," Energies, MDPI, vol. 12(7), pages 1-18, April.
    4. Xuan Yao & Man Zhang & Boyu Deng & Xinhua Yang & Hairui Yang, 2021. "Primary Research of a New Zero-Liquid-Discharge Technology of Wet Flue Gas Desulfurization Wastewater by Low-Rank Heat from Flue Gas," Energies, MDPI, vol. 14(14), pages 1-9, July.
    5. Soheil Kavian & Mohsen Saffari Pour & Ali Hakkaki-Fard, 2019. "Optimized Design of the District Heating System by Considering the Techno-Economic Aspects and Future Weather Projection," Energies, MDPI, vol. 12(9), pages 1-30, May.
    6. Zbigniew Plutecki & Paweł Sattler & Krystian Ryszczyk & Anna Duczkowska & Stanisław Anweiler, 2020. "Thermokinetics of Brown Coal during a Fluidized Drying Process," Energies, MDPI, vol. 13(3), pages 1-16, February.
    7. Francesco Calise & Mário Costa & Qiuwang Wang & Xiliang Zhang & Neven Duić, 2018. "Recent Advances in the Analysis of Sustainable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongqi Sun & Zuotai Zhang & Lili Liu & Xidong Wang, 2015. "Heat Recovery from High Temperature Slags: A Review of Chemical Methods," Energies, MDPI, vol. 8(3), pages 1-19, March.
    2. Sun, Yongqi & Shen, Hongwei & Wang, Hao & Wang, Xidong & Zhang, Zuotai, 2014. "Experimental investigation and modeling of cooling processes of high temperature slags," Energy, Elsevier, vol. 76(C), pages 761-767.
    3. Tan, Yu & Wang, Hong & Zhu, Xun & Lv, Yi-Wen & Ding, Yu-Dong & Liao, Qiang, 2020. "Film fragmentation mode: The most suitable way for centrifugal granulation of large flow rate molten blast slag towards high-efficiency waste heat recovery for industrialization," Applied Energy, Elsevier, vol. 276(C).
    4. Sun, Yongqi & Seetharaman, Seshadri & Liu, Qianyi & Zhang, Zuotai & Liu, Lili & Wang, Xidong, 2016. "Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases," Energy, Elsevier, vol. 114(C), pages 165-176.
    5. Duan, Wenjun & Yu, Qingbo & Wang, Zhimei & Liu, Junxiang & Qin, Qin, 2018. "Life cycle and economic assessment of multi-stage blast furnace slag waste heat recovery system," Energy, Elsevier, vol. 142(C), pages 486-495.
    6. Lv, Yi-Wen & Zhu, Xun & Wang, Hong & Dai, Mao-Lin & Ding, Yu-Dong & Wu, Jun-Jun & Liao, Qiang, 2021. "A hybrid cooling system to enable adhesion-free heat recovery from centrifugal granulated slag particles," Applied Energy, Elsevier, vol. 303(C).
    7. Yongqi Sun & Zuotai Zhang & Lili Liu & Xidong Wang, 2014. "Multi-Stage Control of Waste Heat Recovery from High Temperature Slags Based on Time Temperature Transformation Curves," Energies, MDPI, vol. 7(3), pages 1-12, March.
    8. Wu, Junjun & Wang, Hong & Zhu, Xun & Liao, Qiang, 2024. "Modelling centrifugal-granulation-assisted thermal energy recovery from molten slag at high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    9. Shen, Chong & Zhang, Maoyong & Li, Xianting, 2017. "Experimental investigation on the thermal performance of cooling pipes embedded in a graphitization furnace," Energy, Elsevier, vol. 121(C), pages 55-65.
    10. Wu, Junjun & Tan, Yu & Li, Peng & Wang, Hong & Zhu, Xun & Liao, Qiang, 2022. "Centrifugal-Granulation-Assisted thermal energy recovery towards low-carbon blast furnace slag treatment: State of the art and future challenges," Applied Energy, Elsevier, vol. 325(C).
    11. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    12. Yang, Sheng & Yang, Siyu & Wang, Yifan & Qian, Yu, 2017. "Low grade waste heat recovery with a novel cascade absorption heat transformer," Energy, Elsevier, vol. 130(C), pages 461-472.
    13. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    14. Zhang, Hui & Wang, Hong & Zhu, Xun & Qiu, Yong-Jun & Li, Kai & Chen, Rong & Liao, Qiang, 2013. "A review of waste heat recovery technologies towards molten slag in steel industry," Applied Energy, Elsevier, vol. 112(C), pages 956-966.
    15. Yang, Sheng & Qian, Yu & Wang, Yifan & Yang, Siyu, 2017. "A novel cascade absorption heat transformer process using low grade waste heat and its application to coal to synthetic natural gas," Applied Energy, Elsevier, vol. 202(C), pages 42-52.
    16. Wang, Hong & Wu, Jun-Jun & Zhu, Xun & Liao, Qiang & Zhao, Liang, 2016. "Energy–environment–economy evaluations of commercial scale systems for blast furnace slag treatment: Dry slag granulation vs. water quenching," Applied Energy, Elsevier, vol. 171(C), pages 314-324.
    17. Andrzej Rostocki & Hilal Unyay & Katarzyna Ławińska & Andrzej Obraniak, 2022. "Granulates Based on Bio and Industrial Waste and Biochar in a Sustainable Economy," Energies, MDPI, vol. 16(1), pages 1-18, December.
    18. Dawei Zhao & Zuotai Zhang & Xulong Tang & Lili Liu & Xidong Wang, 2014. "Preparation of Slag Wool by Integrated Waste-Heat Recovery and Resource Recycling of Molten Blast Furnace Slags: From Fundamental to Industrial Application," Energies, MDPI, vol. 7(5), pages 1-15, May.
    19. Luo, Siyi & Fu, Jie & Zhou, Yangmin & Yi, Chuijie, 2017. "The production of hydrogen-rich gas by catalytic pyrolysis of biomass using waste heat from blast-furnace slag," Renewable Energy, Elsevier, vol. 101(C), pages 1030-1036.
    20. Sun, Yongqi & Seetharaman, Seshadri & Zhang, Zuotai, 2018. "Integrating biomass pyrolysis with waste heat recovery from hot slags via extending the C-loops: Product yields and roles of slags," Energy, Elsevier, vol. 149(C), pages 792-803.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:796-:d:138817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.