IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v276y2020ics0306261920309661.html
   My bibliography  Save this article

Film fragmentation mode: The most suitable way for centrifugal granulation of large flow rate molten blast slag towards high-efficiency waste heat recovery for industrialization

Author

Listed:
  • Tan, Yu
  • Wang, Hong
  • Zhu, Xun
  • Lv, Yi-Wen
  • Ding, Yu-Dong
  • Liao, Qiang

Abstract

In molten slag centrifugal granulation heat recovery technology, the centrifugal granulation process is crucially important to realize efficient heat recovery as well as high-quality resource utilization. Facing the actual large-scale industrial application, the film fragmentation mode is likely to be the suitable operational mode for centrifugal granulation due to its ability to handle large discharged slag flow. However, the fragmentation phenomena and mechanism in film fragmentation mode are unclear since most of the existing experiments scale is too small to reach this mode. Here, the authentic molten slag is employed as the working fluid to investigate the centrifugal granulation characteristics in film fragmentation mode. A unique perforated disintegration of extended free slag sheet in film fragmentation mode is observed, and the good granulation performance is proved through the comparison with that in ligament fragmentation mode. The effects of operating conditions and structural parameters including granulator rotating speed, molten slag mass flow rate, initial slag temperature, rotary cup diameter, and granulation chamber radius are discussed on the particle size distribution and average particle diameter. Finally, the predictive correlation of granulation performance is put forward. For the industrial applications, the rotary cup diameter is recommended between 86 mm and 126 mm, and the granulation chamber radius should be set at least larger than 1.36 m if the granulator rotating speed is designed lower than 1800 rpm.

Suggested Citation

  • Tan, Yu & Wang, Hong & Zhu, Xun & Lv, Yi-Wen & Ding, Yu-Dong & Liao, Qiang, 2020. "Film fragmentation mode: The most suitable way for centrifugal granulation of large flow rate molten blast slag towards high-efficiency waste heat recovery for industrialization," Applied Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309661
    DOI: 10.1016/j.apenergy.2020.115454
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920309661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Hui & Wang, Hong & Zhu, Xun & Qiu, Yong-Jun & Li, Kai & Chen, Rong & Liao, Qiang, 2013. "A review of waste heat recovery technologies towards molten slag in steel industry," Applied Energy, Elsevier, vol. 112(C), pages 956-966.
    2. Bisio, G., 1997. "Energy recovery from molten slag and exploitation of the recovered energy," Energy, Elsevier, vol. 22(5), pages 501-509.
    3. Barati, M. & Esfahani, S. & Utigard, T.A., 2011. "Energy recovery from high temperature slags," Energy, Elsevier, vol. 36(9), pages 5440-5449.
    4. Feng, YanHui & Gao, Jie & Feng, Daili & Zhang, XinXin, 2019. "Modeling of the molten blast furnace slag particle deposition on the wall including phase change and heat transfer," Applied Energy, Elsevier, vol. 248(C), pages 288-298.
    5. Wang, Hong & Wu, Jun-Jun & Zhu, Xun & Liao, Qiang & Zhao, Liang, 2016. "Energy–environment–economy evaluations of commercial scale systems for blast furnace slag treatment: Dry slag granulation vs. water quenching," Applied Energy, Elsevier, vol. 171(C), pages 314-324.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Junjun & Tan, Yu & Li, Peng & Wang, Hong & Zhu, Xun & Liao, Qiang, 2022. "Centrifugal-Granulation-Assisted thermal energy recovery towards low-carbon blast furnace slag treatment: State of the art and future challenges," Applied Energy, Elsevier, vol. 325(C).
    2. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    3. Lv, Yi-Wen & Zhu, Xun & Wang, Hong & Dai, Mao-Lin & Ding, Yu-Dong & Wu, Jun-Jun & Liao, Qiang, 2021. "A hybrid cooling system to enable adhesion-free heat recovery from centrifugal granulated slag particles," Applied Energy, Elsevier, vol. 303(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yongqi & Shen, Hongwei & Wang, Hao & Wang, Xidong & Zhang, Zuotai, 2014. "Experimental investigation and modeling of cooling processes of high temperature slags," Energy, Elsevier, vol. 76(C), pages 761-767.
    2. Yongqi Sun & Zuotai Zhang & Lili Liu & Xidong Wang, 2015. "Heat Recovery from High Temperature Slags: A Review of Chemical Methods," Energies, MDPI, vol. 8(3), pages 1-19, March.
    3. Wu, Junjun & Tan, Yu & Li, Peng & Wang, Hong & Zhu, Xun & Liao, Qiang, 2022. "Centrifugal-Granulation-Assisted thermal energy recovery towards low-carbon blast furnace slag treatment: State of the art and future challenges," Applied Energy, Elsevier, vol. 325(C).
    4. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    5. Duan, Wenjun & Yu, Qingbo & Wang, Zhimei & Liu, Junxiang & Qin, Qin, 2018. "Life cycle and economic assessment of multi-stage blast furnace slag waste heat recovery system," Energy, Elsevier, vol. 142(C), pages 486-495.
    6. Mariusz Tańczuk & Maciej Masiukiewicz & Stanisław Anweiler & Robert Junga, 2018. "Technical Aspects and Energy Effects of Waste Heat Recovery from District Heating Boiler Slag," Energies, MDPI, vol. 11(4), pages 1-19, March.
    7. Yongqi Sun & Zuotai Zhang & Lili Liu & Xidong Wang, 2014. "Multi-Stage Control of Waste Heat Recovery from High Temperature Slags Based on Time Temperature Transformation Curves," Energies, MDPI, vol. 7(3), pages 1-12, March.
    8. Zhang, Kai & Du, Shiqi & Sun, Peng & Zheng, Bin & Liu, Yongqi & Shen, Yingkai & Chang, RunZe & Han, Xiaobiao, 2021. "The effect of particle arrangement on the direct heat extraction of regular packed bed with numerical simulation," Energy, Elsevier, vol. 225(C).
    9. Ding, Jing & Wang, Yarong & Gu, Rong & Wang, Weilong & Lu, Jianfeng, 2019. "Thermochemical storage performance of methane reforming with carbon dioxide using high temperature slag," Applied Energy, Elsevier, vol. 250(C), pages 1270-1279.
    10. Shen, Chong & Zhang, Maoyong & Li, Xianting, 2017. "Experimental investigation on the thermal performance of cooling pipes embedded in a graphitization furnace," Energy, Elsevier, vol. 121(C), pages 55-65.
    11. Yang, Sheng & Yang, Siyu & Wang, Yifan & Qian, Yu, 2017. "Low grade waste heat recovery with a novel cascade absorption heat transformer," Energy, Elsevier, vol. 130(C), pages 461-472.
    12. Sun, Yongqi & Seetharaman, Seshadri & Liu, Qianyi & Zhang, Zuotai & Liu, Lili & Wang, Xidong, 2016. "Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases," Energy, Elsevier, vol. 114(C), pages 165-176.
    13. Zhang, Hui & Wang, Hong & Zhu, Xun & Qiu, Yong-Jun & Li, Kai & Chen, Rong & Liao, Qiang, 2013. "A review of waste heat recovery technologies towards molten slag in steel industry," Applied Energy, Elsevier, vol. 112(C), pages 956-966.
    14. Zuo, Zongliang & Feng, Yan & Li, Xiaoteng & Luo, Siyi & Ma, Jinshuang & Sun, Huiping & Bi, Xuejun & Yu, Qingbo & Zhou, Enze & Zhang, Jingkui & Guo, Jianxiang & Lin, Huan, 2021. "Thermal-chemical conversion of sewage sludge based on waste heat cascade recovery of copper slag: Mass and energy analysis," Energy, Elsevier, vol. 235(C).
    15. Feng, YanHui & Gao, Jie & Feng, Daili & Zhang, XinXin, 2019. "Modeling of the molten blast furnace slag particle deposition on the wall including phase change and heat transfer," Applied Energy, Elsevier, vol. 248(C), pages 288-298.
    16. Yang, Sheng & Qian, Yu & Wang, Yifan & Yang, Siyu, 2017. "A novel cascade absorption heat transformer process using low grade waste heat and its application to coal to synthetic natural gas," Applied Energy, Elsevier, vol. 202(C), pages 42-52.
    17. Wang, Hong & Wu, Jun-Jun & Zhu, Xun & Liao, Qiang & Zhao, Liang, 2016. "Energy–environment–economy evaluations of commercial scale systems for blast furnace slag treatment: Dry slag granulation vs. water quenching," Applied Energy, Elsevier, vol. 171(C), pages 314-324.
    18. Lv, Yi-Wen & Zhu, Xun & Wang, Hong & Dai, Mao-Lin & Ding, Yu-Dong & Wu, Jun-Jun & Liao, Qiang, 2021. "A hybrid cooling system to enable adhesion-free heat recovery from centrifugal granulated slag particles," Applied Energy, Elsevier, vol. 303(C).
    19. Andrzej Rostocki & Hilal Unyay & Katarzyna Ławińska & Andrzej Obraniak, 2022. "Granulates Based on Bio and Industrial Waste and Biochar in a Sustainable Economy," Energies, MDPI, vol. 16(1), pages 1-18, December.
    20. Dawei Zhao & Zuotai Zhang & Xulong Tang & Lili Liu & Xidong Wang, 2014. "Preparation of Slag Wool by Integrated Waste-Heat Recovery and Resource Recycling of Molten Blast Furnace Slags: From Fundamental to Industrial Application," Energies, MDPI, vol. 7(5), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.