IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i11p2759-2770.html
   My bibliography  Save this article

Optimal interface based on power electronics in distributed generation systems for fuel cells

Author

Listed:
  • Andújar, J.M.
  • Segura, F.
  • Durán, E.
  • Rentería, L.A.

Abstract

A hybrid system comprising a fuel cell stack and a battery bank was developed, built and tested in this research work. This hybrid system was built to supply both DC and AC outputs. The voltage levels set on electrical interconnection points are achieved with several power conditioning stages controlled by Pulse Width Modulation (PWM). The main advantage of this system is its excellence as a test bench, since it allows testing system performance at different voltage-restricted interconnecting points. Besides, power electronics are observed to play an essential role in distributed generation systems. The applications of the developed hybrid system extend from Auxiliary Power Units (APU) in vehicles (cars, buses or trains) to Uninterruptible Power Systems (UPS) in hospitals, nursing homes, hotels, office buildings or schools.

Suggested Citation

  • Andújar, J.M. & Segura, F. & Durán, E. & Rentería, L.A., 2011. "Optimal interface based on power electronics in distributed generation systems for fuel cells," Renewable Energy, Elsevier, vol. 36(11), pages 2759-2770.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:11:p:2759-2770
    DOI: 10.1016/j.renene.2011.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111001777
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paska, Józef & Biczel, Piotr & Kłos, Mariusz, 2009. "Hybrid power systems – An effective way of utilising primary energy sources," Renewable Energy, Elsevier, vol. 34(11), pages 2414-2421.
    2. Babu, C.A. & Ashok, S., 2009. "Optimal utilization of renewable energy-based IPPs for industrial load management," Renewable Energy, Elsevier, vol. 34(11), pages 2455-2460.
    3. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2010. "Integrated renewable energy systems for off grid rural electrification of remote area," Renewable Energy, Elsevier, vol. 35(6), pages 1342-1349.
    4. Lagorse, Jeremy & Paire, Damien & Miraoui, Abdellatif, 2009. "Sizing optimization of a stand-alone street lighting system powered by a hybrid system using fuel cell, PV and battery," Renewable Energy, Elsevier, vol. 34(3), pages 683-691.
    5. Andújar, J.M. & Segura, F., 2009. "Fuel cells: History and updating. A walk along two centuries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2309-2322, December.
    6. Scrivano, G. & Piacentino, A. & Cardona, F., 2009. "Experimental characterization of PEM fuel cells by micro-models for the prediction of on-site performance," Renewable Energy, Elsevier, vol. 34(3), pages 634-639.
    7. Yan, Xiaoyu & Crookes, Roy J., 2009. "Life cycle analysis of energy use and greenhouse gas emissions for road transportation fuels in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2505-2514, December.
    8. Kirubakaran, A. & Jain, Shailendra & Nema, R.K., 2009. "A review on fuel cell technologies and power electronic interface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2430-2440, December.
    9. Moreira, Marcos V. & da Silva, Gisele E., 2009. "A practical model for evaluating the performance of proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 34(7), pages 1734-1741.
    10. Andújar, J.M. & Segura, F. & Vasallo, M.J., 2008. "A suitable model plant for control of the set fuel cell−DC/DC converter," Renewable Energy, Elsevier, vol. 33(4), pages 813-826.
    11. Osorio, F. & Torres, J.C., 2009. "Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production," Renewable Energy, Elsevier, vol. 34(10), pages 2164-2171.
    12. Tsoutsos, Theocharis & Papadopoulou, Eleni & Katsiri, Alexandra & Papadopoulos, Agis M., 2008. "Supporting schemes for renewable energy sources and their impact on reducing the emissions of greenhouse gases in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1767-1788, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    2. José-Luis Casteleiro-Roca & Antonio Javier Barragán & Francisca Segura & José Luis Calvo-Rolle & José Manuel Andújar, 2019. "Fuel Cell Output Current Prediction with a Hybrid Intelligent System," Complexity, Hindawi, vol. 2019, pages 1-10, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José-Luis Casteleiro-Roca & Francisco José Vivas & Francisca Segura & Antonio Javier Barragán & Jose Luis Calvo-Rolle & José Manuel Andújar, 2020. "Hybrid Intelligent Modelling in Renewable Energy Sources-Based Microgrid. A Variable Estimation of the Hydrogen Subsystem Oriented to the Energy Management Strategy," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    2. José-Luis Casteleiro-Roca & Antonio Javier Barragán & Francisca Segura & José Luis Calvo-Rolle & José Manuel Andújar, 2019. "Fuel Cell Output Current Prediction with a Hybrid Intelligent System," Complexity, Hindawi, vol. 2019, pages 1-10, February.
    3. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    4. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    5. Roberto Capata, 2018. "Urban and Extra-Urban Hybrid Vehicles: A Technological Review," Energies, MDPI, vol. 11(11), pages 1-38, October.
    6. Raza, Rizwan & Akram, Nadeem & Javed, Muhammad Sufyan & Rafique, Asia & Ullah, Kaleem & Ali, Amjad & Saleem, M. & Ahmed, Riaz, 2016. "Fuel cell technology for sustainable development in Pakistan – An over-view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 450-461.
    7. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    8. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Planning of grid integrated distributed generators: A review of technology, objectives and techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 557-570.
    9. Kumar, Lalit & Jain, Shailendra, 2014. "Electric propulsion system for electric vehicular technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 924-940.
    10. Li, Yong & Yang, Jie & Song, Jian, 2017. "Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 160-172.
    11. Mohammed, Hanin & Al-Othman, Amani & Nancarrow, Paul & Tawalbeh, Muhammad & El Haj Assad, Mamdouh, 2019. "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency," Energy, Elsevier, vol. 172(C), pages 207-219.
    12. Lucia, Umberto, 2014. "Overview on fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 164-169.
    13. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    14. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    15. Carolinne Secco & Maria Eduarda Kounaris Fuziki & Angelo Marcelo Tusset & Giane Gonçalves Lenzi, 2023. "Reactive Processes for H 2 S Removal," Energies, MDPI, vol. 16(4), pages 1-14, February.
    16. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    17. Klein, Sharon J.W. & Coffey, Stephanie, 2016. "Building a sustainable energy future, one community at a time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 867-880.
    18. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2013. "Status of renewable energy consumption and developmental challenges in Sub-Sahara Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 453-463.
    19. Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
    20. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:11:p:2759-2770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.