IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i24p10480-d462315.html
   My bibliography  Save this article

Influence of the Water Vapour Permeability of Airtight Sheets on the Behaviour of Facade

Author

Listed:
  • Joaquín Torres-Ramo

    (Department of Construction, School of Architecture, Building Services and Structures, University of Navarra (UNAV), Calle Universidad, 31009 Pamplona, Spain)

  • Purificación González-Martínez

    (Department of Construction, School of Architecture, Building Services and Structures, University of Navarra (UNAV), Calle Universidad, 31009 Pamplona, Spain)

  • Nerea Arriazu-Ramos

    (Department of Construction, School of Architecture, Building Services and Structures, University of Navarra (UNAV), Calle Universidad, 31009 Pamplona, Spain)

  • Ana Sánchez-Ostiz

    (Department of Construction, School of Architecture, Building Services and Structures, University of Navarra (UNAV), Calle Universidad, 31009 Pamplona, Spain)

Abstract

The air-tightness of the thermal envelope of buildings is one of the measures to reduce their energy demands in order to achieve global warming reduction targets. To this end, airtight sheets with different water vapour permeability characteristics are used. The different products studied are highly dispersed in terms of equivalent air thickness values, leading to confusion. After the analysis carried out, it is concluded that all airtight sheets are vapour barriers. To clarify whether or not these sheets are necessary as vapour barriers, a condensation analysis was carried out on 13 different facades for 3 climate zones with severe winters as defined in Spanish regulations. The results reveal that interstitial condensation occurs in only 7 of the 39 case studies, with the traditional facades of brickwork with render causing the greatest problems if the appropriate products are not used. In these cases, airtight sheets with water vapour barrier characteristics must be applied on the interior face of the insulating material. In all other cases (32), the airtight sheets must be permeable to water vapour if it is looked for a more breathable wall to water vapour and a better control of the interior humidity conditions.

Suggested Citation

  • Joaquín Torres-Ramo & Purificación González-Martínez & Nerea Arriazu-Ramos & Ana Sánchez-Ostiz, 2020. "Influence of the Water Vapour Permeability of Airtight Sheets on the Behaviour of Facade," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10480-:d:462315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/24/10480/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/24/10480/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesca Romana D’Ambrosio Alfano & Marco Dell’Isola & Giorgio Ficco & Boris Igor Palella & Giuseppe Riccio, 2016. "Experimental Air-Tightness Analysis in Mediterranean Buildings after Windows Retrofit," Sustainability, MDPI, vol. 8(10), pages 1-9, September.
    2. Bastien, Diane & Winther-Gaasvig, Martin, 2018. "Influence of driving rain and vapour diffusion on the hygrothermal performance of a hygroscopic and permeable building envelope," Energy, Elsevier, vol. 164(C), pages 288-297.
    3. Víctor Echarri-Iribarren & Cristina Sotos-Solano & Almudena Espinosa-Fernández & Raúl Prado-Govea, 2019. "The Passivhaus Standard in the Spanish Mediterranean: Evaluation of a House’s Thermal Behaviour of Enclosures and Airtightness," Sustainability, MDPI, vol. 11(13), pages 1-25, July.
    4. Paula Ala-Kotila & Terttu Vainio & Jarmo Laamanen, 2020. "The Influence of Building Renovations on Indoor Comfort—A Field Test in an Apartment Building," Energies, MDPI, vol. 13(18), pages 1-18, September.
    5. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toba Samuel Olaoye & Mark Dewsbury & Hartwig Künzel, 2021. "Empirical Investigation of the Hygrothermal Diffusion Properties of Permeable Building Membranes Subjected to Variable Relative Humidity Condition," Energies, MDPI, vol. 14(13), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    2. Mao, Ning & Pan, Dongmei & Li, Zhao & Xu, Yingjie & Song, Mengjie & Deng, Shiming, 2017. "A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort," Applied Energy, Elsevier, vol. 192(C), pages 213-221.
    3. Jesica Fernández-Agüera & Samuel Dominguez-Amarillo & Marco Fornaciari & Fabio Orlandi, 2019. "TVOCs and PM 2.5 in Naturally Ventilated Homes: Three Case Studies in a Mild Climate," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    4. Soulios, V. & Loonen, R.C.G.M. & Metavitsiadis, V. & Hensen, J.L.M., 2018. "Computational performance analysis of overheating mitigation measures in parked vehicles," Applied Energy, Elsevier, vol. 231(C), pages 635-644.
    5. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    6. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    7. Lei, Jiawei & Yang, Jinglei & Yang, En-Hua, 2016. "Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore," Applied Energy, Elsevier, vol. 162(C), pages 207-217.
    8. Andrea Pianella & Lu Aye & Zhengdong Chen & Nicholas S. G. Williams, 2017. "Substrate Depth, Vegetation and Irrigation Affect Green Roof Thermal Performance in a Mediterranean Type Climate," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    9. Krzysztof Wąs & Jan Radoń & Agnieszka Sadłowska-Sałęga, 2020. "Maintenance of Passive House Standard in the Light of Long-Term Study on Energy Use in a Prefabricated Lightweight Passive House in Central Europe," Energies, MDPI, vol. 13(11), pages 1-22, June.
    10. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    11. Mao, Ning & Hao, Jingyu & He, Tianbiao & Song, Mengjie & Xu, Yingjie & Deng, Shiming, 2019. "PMV-based dynamic optimization of energy consumption for a residential task/ambient air conditioning system in different climate zones," Renewable Energy, Elsevier, vol. 142(C), pages 41-54.
    12. Hoon Lee, Jae & Jeong, Jinhwa & Tae Chae, Young, 2020. "Optimal control parameter for electrochromic glazing operation in commercial buildings under different climatic conditions," Applied Energy, Elsevier, vol. 260(C).
    13. Angelo Monteleone & Gianluca Rodonò & Antonio Gagliano & Vincenzo Sapienza, 2021. "SLICE: An Innovative Photovoltaic Solution for Adaptive Envelope Prototyping and Testing in a Relevant Environment," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    14. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
    15. Azis, Shazmin Shareena Ab., 2021. "Improving present-day energy savings among green building sector in Malaysia using benefit transfer approach: Cooling and lighting loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Zhang, Tiantian & Yang, Hongxing, 2019. "Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades," Applied Energy, Elsevier, vol. 242(C), pages 107-120.
    17. Mohammad Arar & Chuloh Jung, 2021. "Improving the Indoor Air Quality in Nursery Buildings in United Arab Emirates," IJERPH, MDPI, vol. 18(22), pages 1-19, November.
    18. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    19. Hou, Jin & Xu, Peng & Lu, Xing & Pang, Zhihong & Chu, Yiyi & Huang, Gongsheng, 2018. "Implementation of expansion planning in existing district energy system: A case study in China," Applied Energy, Elsevier, vol. 211(C), pages 269-281.
    20. Sommese, Francesco & Badarnah, Lidia & Ausiello, Gigliola, 2022. "A critical review of biomimetic building envelopes: towards a bio-adaptive model from nature to architecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10480-:d:462315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.