IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i22p12091-d681638.html
   My bibliography  Save this article

Improving the Indoor Air Quality in Nursery Buildings in United Arab Emirates

Author

Listed:
  • Mohammad Arar

    (Department of Architecture, College of Architecture, Art and Design, Ajman University, Ajman 346, United Arab Emirates)

  • Chuloh Jung

    (Department of Architecture, College of Architecture, Art and Design, Ajman University, Ajman 346, United Arab Emirates)

Abstract

Children inhale indoor air at 400 mL/min∙kg per body weight, 2.76 times more than adults. They have weaker immunity than adults and are more exposed to asthma, allergies, and atopic diseases. The objective of this paper is to suggest effective management and improvement measures for indoor air quality for nurseries. As a methodology, 16 nurseries (total of 35 classrooms) were selected to measure the indoor air quality compared with WHO IAQ Standard, and identify the daily concentration change of the pollutants. Based on the measurements, IAQ improvements for selected facilities are carried out to compare the results before and after improvement. The result has shown that the concentration of Carbon Dioxide (CO 2 ), Total Volatile Organic Compounds (TVOC), Total Suspended Particles (TSP) and formaldehyde (CH 2 O) exceeds WHO IAQ standards. The concentration of CO 2 and TSP is changed mainly by physical activity of children and that of CH 2 O and TVOC is changed mainly by ventilation after school start. TVOC decreased by 46.4% and the TSP decreased by 21.7% after air purifier, but CH 2 O and TVOC increased 1.8–3.8 times after interior renovation with low-emission finishing materials. After new ventilation installation, the CH 2 O and TVOC reduced half and the TSP reduced one third. It is proven that the most effective way to reduce the concentration of air pollutants in nurseries is the installation of a new ventilation system, followed by an air purifier. The renovation with low-emission finishing materials cannot improve IAQ in a short period of time.

Suggested Citation

  • Mohammad Arar & Chuloh Jung, 2021. "Improving the Indoor Air Quality in Nursery Buildings in United Arab Emirates," IJERPH, MDPI, vol. 18(22), pages 1-19, November.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:22:p:12091-:d:681638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/22/12091/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/22/12091/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sukjoon Oh & Suwon Song, 2021. "Detailed Analysis of Thermal Comfort and Indoor Air Quality Using Real-Time Multiple Environmental Monitoring Data for a Childcare Center," Energies, MDPI, vol. 14(3), pages 1-16, January.
    2. Francesca Romana D’Ambrosio Alfano & Marco Dell’Isola & Giorgio Ficco & Boris Igor Palella & Giuseppe Riccio, 2016. "Experimental Air-Tightness Analysis in Mediterranean Buildings after Windows Retrofit," Sustainability, MDPI, vol. 8(10), pages 1-9, September.
    3. Ling-tim Wong & Kwok-wai Mui & Tsz-wun Tsang, 2016. "Evaluation of Indoor Air Quality Screening Strategies: A Step-Wise Approach for IAQ Screening," IJERPH, MDPI, vol. 13(12), pages 1-9, December.
    4. Paolo Carrer & Peder Wolkoff, 2018. "Assessment of Indoor Air Quality Problems in Office-Like Environments: Role of Occupational Health Services," IJERPH, MDPI, vol. 15(4), pages 1-8, April.
    5. Vinh Van Tran & Duckshin Park & Young-Chul Lee, 2020. "Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality," IJERPH, MDPI, vol. 17(8), pages 1-27, April.
    6. Alejandro Moreno-Rangel & Tim Sharpe & Gráinne McGill & Filbert Musau, 2020. "Indoor Air Quality in Passivhaus Dwellings: A Literature Review," IJERPH, MDPI, vol. 17(13), pages 1-16, July.
    7. Seonghyun Park & Janghoo Seo, 2018. "Bake-Out Strategy Considering Energy Consumption for Improvement of Indoor Air Quality in Floor Heating Environments," IJERPH, MDPI, vol. 15(12), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Arar & Chuloh Jung, 2022. "Analyzing the Perception of Indoor Air Quality (IAQ) from a Survey of New Townhouse Residents in Dubai," Sustainability, MDPI, vol. 14(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aner Martinez-Soto & Carlos Jimenez-Gallardo & Andrés Villarroel-Lopez & Alejandro Reyes-Riveros & Johanna Höhl, 2024. "Toward Sustainable Indoor Environments: Assessing the Impact of Thermal Insulation Measures on Air Quality in Buildings—A Case Study in Temuco, Chile," Sustainability, MDPI, vol. 16(2), pages 1-17, January.
    2. Seonghyun Park & Janghoo Seo & Sunwoo Lee, 2020. "Distribution Characteristics of Indoor PM 2.5 Concentration Based on the Water Type and Humidification Method," IJERPH, MDPI, vol. 17(22), pages 1-15, November.
    3. Mohammad Arar & Chuloh Jung, 2022. "Analyzing the Perception of Indoor Air Quality (IAQ) from a Survey of New Townhouse Residents in Dubai," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    4. Hélène Niculita-Hirzel, 2022. "Latest Trends in Pollutant Accumulations at Threatening Levels in Energy-Efficient Residential Buildings with and without Mechanical Ventilation: A Review," IJERPH, MDPI, vol. 19(6), pages 1-12, March.
    5. Jesica Fernández-Agüera & Samuel Dominguez-Amarillo & Marco Fornaciari & Fabio Orlandi, 2019. "TVOCs and PM 2.5 in Naturally Ventilated Homes: Three Case Studies in a Mild Climate," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    6. Eerika Finell & Jouko Nätti, 2019. "The Combined Effect of Poor Perceived Indoor Environmental Quality and Psychosocial Stressors on Long-Term Sickness Absence in the Workplace: A Follow-Up Study," IJERPH, MDPI, vol. 16(24), pages 1-13, December.
    7. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    8. Rojhat Ibrahim & Sara Elhadad & Bálint Baranyai & Tamás János Katona, 2022. "Impact Assessment of Morphology and Layout of Zones on Refugees’ Affordable Core Shelter Performance," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    9. Max Gerrit Adam & Phuong Thi Minh Tran & David Kok Wai Cheong & Sitaraman Chandra Sekhar & Kwok Wai Tham & Rajasekhar Balasubramanian, 2021. "Assessment of Home-Based and Mobility-Based Exposure to Black Carbon in an Urban Environment: A Pilot Study," IJERPH, MDPI, vol. 18(9), pages 1-18, May.
    10. Ling Zhang & Changjin Ou & Dhammika Magana-Arachchi & Meththika Vithanage & Kanth Swaroop Vanka & Thava Palanisami & Kanaji Masakorala & Hasintha Wijesekara & Yubo Yan & Nanthi Bolan & M. B. Kirkham, 2021. "Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation," IJERPH, MDPI, vol. 18(21), pages 1-33, October.
    11. Francesco Lolli & Antonio Maria Coruzzolo & Samuele Marinello & Asia Traini & Rita Gamberini, 2022. "A Bibliographic Analysis of Indoor Air Quality (IAQ) in Industrial Environments," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    12. Fanghua Li & Abbas Ali Chandio & Yinying Duan & Dungang Zang, 2022. "How Does Clean Energy Consumption Affect Women’s Health: New Insights from China," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    13. Alexandru Ilieș & Tudor Caciora & Florin Marcu & Zharas Berdenov & Gabriela Ilieș & Bahodirhon Safarov & Nicolaie Hodor & Vasile Grama & Maisa Ali Al Shomali & Dorina Camelia Ilies & Ovidiu Gaceu & Mo, 2022. "Analysis of the Interior Microclimate in Art Nouveau Heritage Buildings for the Protection of Exhibits and Human Health," IJERPH, MDPI, vol. 19(24), pages 1-26, December.
    14. Roberto Albertini & Maria Eugenia Colucci & Isabella Viani & Emanuela Capobianco & Michele Serpentino & Alessia Coluccia & Mostafa Mohieldin Mahgoub Ibrahim & Roberta Zoni & Paola Affanni & Licia Vero, 2024. "Study on the Effectiveness of a Copper Electrostatic Filtration System “Aerok 1.0” for Air Disinfection," IJERPH, MDPI, vol. 21(9), pages 1-12, September.
    15. He, Sha & Tang, Sanyi & Zhang, Qimin & Rong, Libin & Cheke, Robert A., 2023. "Modelling optimal control of air pollution to reduce respiratory diseases," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    16. Zhiqiang Wang & Qi Tian & Jie Jia, 2021. "Numerical Study on Performance Optimization of an Energy-Saving Insulated Window," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    17. Shirin Kahremany & Lukas Hofmann & Noy Eretz-Kdosha & Eldad Silberstein & Arie Gruzman & Guy Cohen, 2021. "SH-29 and SK-119 Attenuates Air-Pollution Induced Damage by Activating Nrf2 in HaCaT Cells," IJERPH, MDPI, vol. 18(23), pages 1-16, November.
    18. Esad Tombarević & Igor Vušanović & Milan Šekularac, 2023. "The Impact of Windows Replacement on Airtightness and Energy Consumption of a Single Apartment in a Multi-Family Residential Building in Montenegro: A Case Study," Energies, MDPI, vol. 16(5), pages 1-16, February.
    19. Higney, Anthony & Gibb, Kenneth, 2024. "Net zero retrofit of older tenement housing – The contribution of cost benefit analysis to wider evaluation of a demonstration project," Energy Policy, Elsevier, vol. 191(C).
    20. Hirou Karimi & Mohammad Anvar Adibhesami & Hassan Bazazzadeh & Sahar Movafagh, 2023. "Green Buildings: Human-Centered and Energy Efficiency Optimization Strategies," Energies, MDPI, vol. 16(9), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:22:p:12091-:d:681638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.